https://www.selleckchem.com/products/INCB18424.html The production cost of controlled-release fertilizers is an important factoring limiting their applications. To reduce the coating cost of diammonium phosphate (DAP) and improve its nutrition release characteristics, the fertilizer cores were modified by water polishing with three dosages at 1, 2, and 3%. The effects of modification were evaluated in terms of particle hardness, size distribution, angle of repose and specific surface area. Castor oil-based polyurethane was used as coating material for fertilizer performance evaluation. A pot experiment was conducted to verify the fertilizer efficiency of coated diammonium phosphate (CDAP) with maize. The results showed that polishing with 2% water reduced the angle of repose by 2.48-10.57% and specific surface area by 5.70-48.76%, making it more suitable for coating. The nutrient release period of CDAP was significantly prolonged by 5.36 times. Soil available phosphorous, enzyme activities, maize grain yield, and phosphorous use efficiency were all improved through the blending application of coated and normal phosphate fertilizer. This study demonstrated that water-based surface modification is a low-cost and effective method for improvement and promotion of controlled release P fertilizers.In response to infestation by herbivores, rice plants rapidly biosynthesize defense compounds by activating a series of defense-related pathways. However, which defensive compounds in rice are effective against herbivores remains largely unknown. We found that the infestation of white-backed planthopper (WBPH) Sogatella furcifera gravid females significantly increased levels of jasmonic acid (JA), jasmonoyl-isoleucine (JA-Ile) and H2O2, and reduced the level of ethylene in rice; levels of 11 of the tested 12 phenolamides (PAs) were subsequently enhanced. In contrast, WBPH nymph infestation had no effect on levels of JA, JA-Ile, ethylene and H2O2 in rice, and enhanced levels of o