Chromatographic separation ofn-hexane and ethyl acetate fraction of a crude methanol extract obtained from aerial parts of theScorzonera aucherianaDC collected from Sivas province of Turkey yielded nine natural compounds; two new 3-caffeoyl-quinic acid analogs (1-2), one new taraxasterol oleate (3), and six known triterpenoids taraxasterol (4), taraxasterol acetate (5), ptiloepoxide (6), lupeol (7), lupeol acetate (8), andβ-sitosterol (9) were characterized. The structures of the isolated compounds were elucidated on the basis of NMR (1H,13C, COSY, HMBC, HSQC, and TOCSY), UV, FT-IR and LC-Q-TOF-MS spectrometric data.This study reports a detailed analysis of an electrode material containing poly(phenolphthalein), carbon nanotubes and gold nanoparticles which shows superior catalytic effect towards to hydrazine oxidation in Britton-Robinson buffer (pH 10.0). Glassy carbon electrode was modified by electropolymerization of phenolphthalein (PP) monomer (poly(PP)/GCE) and the multiwalled carbon nanotubes (MWCNTs) was dropped on the surface. This modified surface was electrodeposited with gold nanoparticles (AuNPs/CNT/poly(PP)/GCE). The fabricated electrode was analysed the determination of hydrazine using cyclic voltammetry, linear sweep voltammetry and amperometry. The peak potential of hydrazine oxidation on bare GCE, poly(PP)/GCE, CNT/GCE, CNT/poly(PP)/GCE, and AuNPs/CNT/poly(PP)/GCE were observed at 596 mV, 342 mV, 320 mV, 313 mV, and 27 mV, respectively. A shift in the overpotential to more negative direction and an enhancement in the peak current indicated that the AuNPs/CNT/poly(PP)/GC electrode presented an efficient electrocatalytic activity toward oxidation of hydrazine. Modified electrodes were characterized with High-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). Amperometric current responses in the low hydrazine concentration range of 0.25-13 µM at the AuNPs/CNT/poly(PP)/GCE. The limit of detection (LOD) value was obtained to be 0.083 µM. A modified electrode was applied to naturel samples for hydrazine determination.The presence of heavy metals in environmental waters having an important place in the industrial waste is a major threat to viability. Heavy metals are transported to humans through the ecological cycle, damaging many tissues and organs. In recent years, agricultural and food waste can be used to remove heavy metals. At the present study, magnetically modified coffee grains which are alternative to conventional particle systems were prepared and heavy metal removal performances were investigated. The coffee grains used were magnetically modified by contact with water-based magnetic fluid. Magnetically modified coffee grains were characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area analysis and electron spin resonance (ESR). Adsorption studies are made with four different heavy metal ions, namely Cu(II), Pb(II), Cd(II) and Zn(II). Adsorption isotherms were determined and heavy metal removal performance of magnetic coffee grains were investigated from synthetic waste water.The current study describes the synthesis, electrochemical, computational, and photochemical properties of octa (3-hydroxypropylthio) substituted cobalt (II) ( 4 ), copper (II) ( 5 ), nickel (II) ( 6 ) and zinc(II) ( 7 ) phthalocyanine derivatives. These novel compounds were characterized by elemental analysis,1H,13C NMR, FT-IR, UV-Vis, and MS. The redox behaviors of these metallo-phthalocyanines were investigated by the cyclic voltammetric method. The optimized molecular structure and gauge-including atomic orbital (GIAO)1H and13C NMR chemical shift values of these phthalocyanines in the ground state had been calculated by using B3LYP/6-31G(d,p) basis set. The outcomes of the optimized molecular structure were given and compared with the experimental NMR values. The photochemical properties including photodegradation and singlet oxygen generation of zinc(II) phthalocyanine were studied in DMSO solution for the determination of its photosensitizer behaviors.In this study, quantative nuclear magnetic resonance (qNMR) method was used to determine the content of rosuvastatin in tablet. Linearity, range, limit of detection (LOD), limit of quantification (LOQ), accuracy, and precision were determined in validation study of rosuvastatin. Furthermore, validation study of rosuvastatin was performed with high performance liquid chromatography (HPLC). Uncertainties of qNMR and HPLC methods were determined using per EURACHEM/CITAC Guide CG 4 (3th edition), quantifying uncertainty in analytical measurement. qNMR and HPLC methods were linear in the ranges of 0.10 - 5.00 mg/mL and 0.001 - 0.0995 mg/mL, respectively and these lineraties indicate very good linearity performance with regression coefficients (R2 value) above > 0.99. Moreover, LOD and LOQ values using qNMR method were observed as 0.25 mg/mL and 0.80 mg/mL, respectively. https://www.selleckchem.com/products/rituximab.html These values using HPLC method were found as 0.00051 µg/mL and 0.001695 µg/mL, respectively. The strengths and weaknesses of qNMR method and HPLC method were determined with spectral emphasis on the role of identical reference standards in qualitive and quantitative analyses. It was found that qNMR method is simple, efficient, reliable, and accurate method. Moreover, qNMR method is an easy, practical, and useful method for the validation and optimization of rosuvastatin in the tablet.Formaldehyde (FA, CH2O) is one of the toxic volatile organic compounds that cause harmful effects on the human body. In this work, the interaction of FA gas with metal phthalocyanine (MPc) molecules was studied by employing density functional theory calculations. A variety of [MPc]a (M = Sc, Ti, and V; a = -1, 0, and +1) complexes were studied, and the electronic properties, interaction energies, and charge transfer properties of all of the studied molecules were systematically discussed. Among the studied complexes, the Sc and Ti phthalocyanines were more reactive toward the adsorption of FA gas. Moreover, it was revealed that the interaction of the [ScPc]+1 and [TiPc]0 complexes with the CH2O molecule was stronger, in which the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy gap of 46% and 36% decreased after FA adsorption. The results indicated that the MPc-based materials may be a promising candidate for the detection of FA gas.