The above indicators in soil layer above 20 cm basically met the normal requirements of apple trees, whereas soil layer below 20 cm exceeded the threshold for healthy growth of apple trees. The main reasons for soil compaction below the subsurface layer were poor soil aggregation, the lack of soil organic matter, less human disturbance during fruit planting, and the movement of scattered clay particles to the lower layer. With increasing years of fruit planting, soil compaction became more severe.Taking 7-year-old apple trees (Hanfu) as the test material, an experiment with three irrigation levels including high water (W1, 85%-100%θf, θf was the field water holding capacity), medium water (W2, 70%-85%θf) and low water (W3, 55%-70%θf), and three nitrogen application levels, high (N1, 600 kg·hm-2), medium (N2, 400 kg·hm-2) and low (N3, 200 kg·hm-2), was conducted to investigate the effects of water and nitrogen coupling on photosynthetic characteristics, yield and water and nitrogen utilization of apple trees in mountainous areas under surge-root irrigation (SRI). The results showed that the net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (gs), intercellular CO2 concentration (Ci), leaf instantaneous water use efficiency (WUEi) of apple trees leaves decreased with decreasing nitrogen application rates under the same irrigation amount, but Ci increased. Under the same nitrogen application rate, foliar Pn, Tr, gs and WUEi decreased with decreasing irrigation amount, but Ci increased. The daily average values of Pn and Tr under W1N1 treatment were the largest, while W2N2 treatment had the largest WUEi. Apple yield, irrigation water use efficiency (IWUE) and nitrogen partial productivity (NPFP) were significantly affected by irrigation and nitrogen application. The W2N2 treatment had the highest yield (26761 kg·hm-2). IWUE increased significantly with the decreasing irrigation and the increasing nitrogen application, while NPFP increased significantly with the increases of irrigation and the decreases of nitrogen application. Results of the regression analysis showed that the combination of irrigation and nitrogen application was closest to W2N2 treatment when yield and IWUE got the optimal solution. Therefore, W2N2 treatment was the best combination mode of water and nitrogen application for apple under SRI in Northern Shaanxi mountain area.To explore the optimal monitoring method for soil and plant analyzer development (SPAD) of winter wheat under waterlogging stress based on hyperspectral and digital image techno-logy, the correlations between SPAD of the waterlogged winter wheat and fifteen indices of hyperspectral characteristic and fourteen indices of digital image feature were analyzed under a micro-plot which could be irrigated and drainage separately. Then, the BP neural network models for SPAD estimation were constructed based on the optimal monitoring feature indices. Compared with the normal winter wheat, SPAD and the value of hyperspectral reflectance did not change under short-term waterlogging (less than 7 d), whereas the SPAD was significantly decreased after more than 12 d waterlogging treatment with the value being close to zero at the late stage of growth. The estimation accuracy based on the digital image characteristics of green minus red, excess red index, norma-lized redness index and excess green index showed similar results compared to that using the BP network model based on the characteristics of the corresponding hyperspectral band. The highest R2 between the measured value and the predicted value was 0.86, while the root mean square error (RMSE) was 3.98. Compared with the BP network models built with the digital image feathers, the accuracy of the models based on the four hyperspectral characteristic indices (carotenoid reflex index, yellow edge amplitude, normalized difference vegetation index and structure insensitive pigment index) for SPAD was significantly improved, with the highest R2 of 0.97 and the lowest RMSE of 1.95. Our results suggest that both hyperspectral and digital image technology could be used to estimate SPAD value of waterlogged winter wheat and that the BP network model based on hyperspectral characteristic indices performed better in the estimation accuracy.To solve the problem of uncoordinated source-sink relationship that limits the increase of peanut yield, we investigated the regulating effects of ethephon on the formation of source-sink in cultivar Shanhua 9 by spraying at 10, 20, and 30 d after anthesis in a field experiment. The results showed that spraying ethephon at 10 d and 20 d after anthesis significantly reduced the number of flowers, pegs and young pods, but increased the number of immature pods and mature pods. Spraying at 30 d after anthesis did not affect the number of flowers, pegs and young pods. Spraying ethephon could improve the leaf area per plant. Spraying at 10 d after anthesis achieved the highest leaf area per plant and the increment amplitude decreased with the delay of spraying stage. Spraying ethephon at 10 d and 20 d after anthesis significantly improved the photosynthetic performance of peanut, whereas spraying at 30 days after anthesis increased the photosynthesis only in the short-term and had no effect at late growth period. https://www.selleckchem.com/products/acetylcysteine.html In terms of the comprehensive characters of source and sink, spraying ethephon at 20 d after anthesis achieved the most harmonious source-sink relationship, which could promote the transport of photosynthate to pods and increase the economic pods ratio, pod fullness, and the yield. Therefore, spraying ethephon is an effective practice to solve the problems of "more flowers but less pegs" and "more pods but less kernels" in peanut. The optimum spraying stage of ethephon to regulate flowering should be at 20 d after anthesis.The strategy of few or no-phosphorus fertilization in rice season but more in wheat season can effectively increase phosphorus use efficiency and reduce phosphorus loss through runoff and leaching. It remains unknown whether the lack of phosphorus will affect greenhouse gas emission in the rice season. We monitored the CH4 and N2O emission fluxes during the growth period of rice treated with normal phosphorus application (NPK) and no-phosphorus application (NK) in two long-term experimental fields in Suzhou and Yixing. The results showed that long-term no-phosphorus application promoted CH4 and N2O emission in both fields. Compared with the NPK treatment, CH4 and N2O emissions from the NK treatment significantly increased by 57% and 25% in Suzhou experi-mental field, respectively, while those in Yixing experimental field were also significantly increased by 221% and 70%, respectively. The contents of organic acid, dissolved organic carbon and available phosphorus in soil were reduced under long-term NK treatment, and they were closely related to CH4 emission.