https://www.selleckchem.com/products/raphin1.html Formed in 2000 at Virginia Commonwealth University, the Center for Bioelectronics, Biosensors and Biochips (C3B®) has subsequently been located at Clemson University and at Texas A&M University. Established as an industry-university collaborative center of excellence, the C3B has contributed new knowledge and technology in the areas of i) molecular bioelectronics, ii) responsive polymers, iii) multiplexed biosensor systems, and iv) bioelectronic biosensors. Noteworthy contributions in these areas include i) being the first to report direct electron transfer of oxidoreductase enzymes enabled by single walled carbon nanotubes and colloidal clays, ii) the molecular level integration of inherently conductive polymers with bioactive hydrogels using bi-functional monomers such as poly(pyrrole-co-3-pyrrolylbutyrate-conj-aminoethylmethacrylate) [PyBA-conj-AEMA] and 3-(1-ethyl methacryloylate)aniline to yield hetero-ladder electroconductive hydrogels, iii) the development of a multi-analyte physiological status monitoring biochip, and iv) the development of a bioanalytical Wien-bridge oscillator for the fused measurement to lactate and glucose. The present review takes a critical look of these contributions over the past 20 years and offers some perspective on the future of bioelectronics-based biosensors and systems. Particular attention is given to multiplexed biosensor systems and data fusion for rapid decision making. Atopic dermatitis (AD) is characterized by impaired skin barrier function and immune system dysfunction. The expression and role of Yes-associated protein (YAP) in AD are unclear. To characterize the role of the YAP in T cell imbalance and epidermal keratinocyte dysfunction in the pathogenesis of AD. We included 35 patients with AD (21 acute and 14 chronic). An AD mouse model was constructed using 2,4-dinitrofluorobenzene, and AD-like inflammatory cell model was constructed using TNF-α/IFN-γ-activated HaCaT