https://www.selleckchem.com/products/bp-1-102.html The trichophycin family of compounds are chlorinated polyketides first discovered from environmental collections of a bloom-forming Trichodesmium sp. cyanobacterium. In an effort to fully capture the chemical space of this group of metabolites, the utilization of MS/MS-based molecular networking of a Trichodesmium thiebautii extract revealed a metabolome replete with halogenated compounds. Subsequent MS-guided isolation resulted in the characterization of isotrichophycin C and trichophycins G-I (1-4). These new metabolites had intriguing structural variations from those trichophycins previously characterized, which allowed for a comparative study to examine structural features that are associated with toxicity to murine neuroblastoma cells. Additionally, we propose the absolute configuration of the previously characterized trichophycin A (5). Overall, the metabolome of the Trichodesmium bloom is hallmarked by an unprecedented amount of chlorinated molecules, many of which remain to be structurally characterized.Enantioselective diverse synthesis of a small-molecule collection with structural and functional similarities or differences in an efficient manner is an appealing but formidable challenge. Asymmetric preparation and branching transformations of tetrahydroindolizines in succession present a useful approach to the construction of N-heterocycle-containing scaffolds with functional group, and stereochemical diversity. Herein, we report a breakthrough toward this end via an initial diastereo- and enantioselective [3 + 2] cycloaddition between pyridinium ylides and enones, following diversified sequential transformations. Chiral N,N'-dioxide-earth metal complexes enable the generation of optically active tetrahydroindolizines in situ, across the strong background reaction for racemate-formation. In connection with deliberate sequential transformations, involving convenient rearomatic oxidation, and light-active az