effect and binding energy and between bonding distance and binding energy. These correlations may lead to the illusion that the charge transfer interaction is unimportant or irrelevant, but further analyses showed that the inclusion of charge transfer is critical for the proper description of the halogen bonding, as considering only electrostatics and polarization leads to only about 45-60% of the binding strengths and much elongated bonding distances.Ionic liquids (ILs) can serve as effective CO2 solvents with an appropriate selection of different anions and cations. However, due to the large library of potential IL compositions, rapid screening methods are needed for characterizing and ranking the expected properties. We have recently proposed the ionic polarity index (IPI) parameter, effectively connecting volume-based approaches and electrostatic potential analyses and providing a single metric that can potentially be used to rapidly screen for desirable IL properties. In this work, the corresponding anion and cation IPIs are used to generate correlations with respect to the CO2 volumetric solubility in ILs. The relationships are generally applicable to groups of ILs within a homologous ion series, and this can be particularly valuable for prescreening different ion pairings for maximizing gas solvation performance.Clear cell renal cell carcinoma (ccRCC) is the most common type of kidney cancer usually associated with asymptomatic development and risk of systemic progression. Hence, reliable molecular biomarkers of ccRCC are needed to provide early and minimally invasive detection. In this study, urinary volatilome profiling of patients diagnosed with ccRCC (n = 75), and cancer-free controls (n = 75), was performed to investigate the presence of a volatile signature characteristic of ccRCC. https://www.selleckchem.com/products/lurbinectedin.html Volatile organic compounds (VOCs) in general, and more specifically volatile carbonyl compounds (VCCs), present in urine were extracted by headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS). Supervised multivariate models showed a good discriminatory power of ccRCC patients from controls in urine. Overall, 22 volatile metabolites were found significantly altered between the two groups, including aldehydes, ketones, aromatic hydrocarbons, and terpenoids. A candidate six-biomarker panel, comprising octanal, 3-methylbutanal, benzaldehyde, 2-furaldehyde, 4-heptanone, and p-cresol, depicted the best performance for ccRCC detection with 83% sensitivity, 79% specificity, and 81% accuracy. Moreover, the ccRCC urinary volatilome signature suggested dysregulation of energy metabolism and overexpression of enzymes associated with carcinogenesis. These findings provide the molecular basis for the fine-tuning of gas-sensing materials for application in the development of a bioelectronic sensor.The mammalian target of rapamycin (mTOR) functions as a critical regulator of cell cycle progression. However, the underlying mechanism by which mTOR regulates cell cycle progression remains elusive. In this study, we used stable isotope labeling of amino acids in cell culture with a two-step strategy for phosphopeptide enrichment and high-throughput quantitative mass spectrometry to perform a global phosphoproteome analysis of mTOR inhibition by rapamycin. By monitoring the phosphoproteome alterations upon rapamycin treatment, downregulation of mTOR signaling pathway was detected and enriched. Further functional analysis of phosphoproteome revealed the involvement of cell cycle events. Specifically, the elevated profile of cell cycle-related substrates was observed, and the activation of CDK1, MAPK1, and MAPK3 kinases was determined. Second, pathway interrogation using kinase inhibitor treatment confirmed that CDK1 activation operated downstream from mTOR inhibition to further regulate cell cycle progression. Third, we found that the activation of CDK1 following 4-12 h of mTOR inhibition was accompanied by the activation of the Greatwall-endosulfine complex. In conclusion, we presented a high-confidence phosphoproteome map inside the cells upon mTOR inhibition by rapamycin. Our data implied that mTOR inhibition could contribute to CDK1 activation for further regulating cell cycle progression, which was mediated by the Greatwall-endosulfine complex.Four-wave mixing at plasmonic tip-sample nanojunctions may be used to visualize plasmonic fields with sub-2 nm spatial resolution under ambient laboratory conditions. We illustrate the latter using a gold-coated atomic force microscopy probe irradiated with a pair of near-infrared femtosecond laser pulses and used to image plasmonic gold nanoplates and silver nanocubes. Through diagnostic polarization-dependent tip-only measurements, we illustrate that the four-wave mixing signal is localized to the tip apex. The apex-bound signal is further enhanced when the tip is located at specific locations near plasmonic nanoparticles. Overall, this work paves the way for visualizing chemical transformations as well as coherent electronic and vibrational dynamics with joint femtosecond temporal and few-nanometer spatial resolution under ambient conditions.We studied the thermal decomposition of dimethyl carbonate (DMC, C3H6O3) in a flash vacuum pyrolysis reactor in the 1100-1700 K range. The reaction products and intermediates were probed by vacuum ultraviolet synchrotron radiation in a photoelectron photoion coincidence (PEPICO) spectrometer to record isomer-specific photoion mass-selected threshold photoelectron (ms-TPE) spectra. Reaction pathways were explored using quantum chemical calculations, which confirmed the experimental observation that the intramolecular migration of a methyl group, yielding dimethyl ether (DME, C2H6O) and carbon dioxide, dominates the initial unimolecular decomposition chemistry. The role of a second potentially important channel, namely, C-O bond fission to yield methyl radicals, could not be determined experimentally due to the short lifetime of the ·C2H3O3 radical and overlapping sequential decomposition products. However, potential energy surface and microcanonical rate constant calculations predict 2 to 3 orders of magnitude lower rates for this channel than for decarboxylation to yield DME.