https://www.selleckchem.com/products/tunicamycin.html Aromatic L-amino acid decarboxylases (AADCs) are ubiquitously found in higher organisms owing to their physiological role in the synthesis of neurotransmitters and alkaloids. However, bacterial AADC has not attracted much attention because of its rather limited availability and narrow substrate range. Here, we examined the biochemical properties of AADC from Bacillus atrophaeus (AADC-BA) and assessed the synthetic feasibility of the enzyme for the preparation of monoamine neurotransmitters. AADC-BA was expressed in Escherichia coli BL21(DE3) and the purified enzyme showed a specific activity of 2.6 ± 0.4 U/mg for 10 mM L-phenylalanine (L-Phe) at 37 °C. AADC-BA showed optimal pH and temperature ranges at 7-8 and 37-45 °C, respectively. The KM and kcat values for L-Phe were 7.2 mM and 7.4 s-1, respectively, at pH 7.0 and 37 °C. Comparison of the kinetic constants at different temperatures revealed that the temperature dependency of the enzyme was mainly determined by catalytic turnover rather than substrate binmino acids. • The substrate specificity was elucidated by in silico structural modeling. • The synthetic potential of AADC-BA was demonstrated for the production of biogenic amines.Cytostatics are compounds used in chemotherapy, known to be genotoxic, mutagenic, and teratogenic at low concentrations. The amount of cytostatic drugs prescribed increases every year as does their release into the aquatic ecosystems, which possibly is a major concern for the health of aquatic organisms. This study aimed to evaluate the putative toxicity of five cytostatics to fathead minnow (Pimephales promelas) larvae tamoxifen, capecitabine, methotrexate, cyclophosphamide, and ifosfamide. Eggs collected post-fertilization were exposed for 6 days to a range of concentrations, including one above environmental level. At all environmental concentrations, no significant difference in mortality, hatching time, length, heart rate, and