The six-year commitment made by OHW to partner municipalities promoted active learning and adaptation and is a clear contributor to the scalability of the OHW Network of Safety. Observing the Network of Safety work through the domains of NOC highlights the interdisciplinary effort required to successfully transform Maternal and Neonatal Health (MNH) services in rural Nepal.Spike trains with negative interspike interval (ISI) correlations, in which long/short ISIs are more likely followed by short/long ISIs, are common in many neurons. They can be described by stochastic models with a spike-triggered adaptation variable. We analyze a phenomenon in these models where such statistically dependent ISI sequences arise in tandem with quasi-statistically independent and identically distributed (quasi-IID) adaptation variable sequences. The sequences of adaptation states and resulting ISIs are linked by a nonlinear decorrelating transformation. We establish general conditions on a family of stochastic spiking models that guarantee this quasi-IID property and establish bounds on the resulting baseline ISI correlations. Inputs that elicit weak firing rate changes in samples with many spikes are known to be more detectible when negative ISI correlations are present because they reduce spike count variance; this defines a variance-reduced firing rate coding benchmark. We performed a Fisher information analysis on these adapting models exhibiting ISI correlations to show that a spike pattern code based on the quasi-IID property achieves the upper bound of detection performance, surpassing rate codes with the same mean rate-including the variance-reduced rate code benchmark-by 20% to 30%. The information loss in rate codes arises because the benefits of reduced spike count variance cannot compensate for the lower firing rate gain due to adaptation. Since adaptation states have similar dynamics to synaptic responses, the quasi-IID decorrelation transformation of the spike train is plausibly implemented by downstream neurons through matched postsynaptic kinetics. This provides an explanation for observed coding performance in sensory systems that cannot be accounted for by rate coding, for example, at the detection threshold where rate changes can be insignificant.Formation of stimulus equivalence classes has been recently modeled through equivalence projective simulation (EPS), a modified version of a projective simulation (PS) learning agent. PS is endowed with an episodic memory that resembles the internal representation in the brain and the concept of cognitive maps. PS flexibility and interpretability enable the EPS model and, consequently the model we explore in this letter, to simulate a broad range of behaviors in matching-to-sample experiments. The episodic memory, the basis for agent decision making, is formed during the training phase. Derived relations in the EPS model that are not trained directly but can be established via the network's connections are computed on demand during the test phase trials by likelihood reasoning. In this letter, we investigate the formation of derived relations in the EPS model using network enhancement (NE), an iterative diffusion process, that yields an offline approach to the agent decision making at the testing phase. The NE process is applied after the training phase to denoise the memory network so that derived relations are formed in the memory network and retrieved during the testing phase. During the NE phase, indirect relations are enhanced, and the structure of episodic memory changes. https://www.selleckchem.com/screening/inhibitor-library.html This approach can also be interpreted as the agent's replay after the training phase, which is in line with recent findings in behavioral and neuroscience studies. In comparison with EPS, our model is able to model the formation of derived relations and other features such as the nodal effect in a more intrinsic manner. Decision making in the test phase is not an ad hoc computational method, but rather a retrieval and update process of the cached relations from the memory network based on the test trial. In order to study the role of parameters on agent performance, the proposed model is simulated and the results discussed through various experimental settings.We propose a novel neural model with lateral interaction for learning tasks. The model consists of two functional fields an elementary field to extract features and a high-level field to store and recognize patterns. Each field is composed of some neurons with lateral interaction, and the neurons in different fields are connected by the rules of synaptic plasticity. The model is established on the current research of cognition and neuroscience, making it more transparent and biologically explainable. Our proposed model is applied to data classification and clustering. The corresponding algorithms share similar processes without requiring any parameter tuning and optimization processes. Numerical experiments validate that the proposed model is feasible in different learning tasks and superior to some state-of-the-art methods, especially in small sample learning, one-shot learning, and clustering.We discuss stability analysis for uncertain stochastic neural networks (SNNs) with time delay in this letter. By constructing a suitable Lyapunov-Krasovskii functional (LKF) and utilizing Wirtinger inequalities for estimating the integral inequalities, the delay-dependent stochastic stability conditions are derived in terms of linear matrix inequalities (LMIs). We discuss the parameter uncertainties in terms of norm-bounded conditions in the given interval with constant delay. The derived conditions ensure that the global, asymptotic stability of the states for the proposed SNNs. We verify the effectiveness and applicability of the proposed criteria with numerical examples.Mild traumatic brain injury (mTBI) presents a significant health concern with potential persisting deficits that can last decades. Although a growing body of literature improves our understanding of the brain network response and corresponding underlying cellular alterations after injury, the effects of cellular disruptions on local circuitry after mTBI are poorly understood. Our group recently reported how mTBI in neuronal networks affects the functional wiring of neural circuits and how neuronal inactivation influences the synchrony of coupled microcircuits. Here, we utilized a computational neural network model to investigate the circuit-level effects of N-methyl D-aspartate receptor dysfunction. The initial increase in activity in injured neurons spreads to downstream neurons, but this increase was partially reduced by restructuring the network with spike-timing-dependent plasticity. As a model of network-based learning, we also investigated how injury alters pattern acquisition, recall, and maintenance of a conditioned response to stimulus.