Intracellular diffusion underlies vital cellular processes. However, it remains difficult to elucidate how an unbound protein diffuses inside the cell with good spatial resolution and sensitivity. Here we introduce single-molecule displacement/diffusivity mapping (SMdM), a super-resolution strategy that enables the nanoscale mapping of intracellular diffusivity through local statistics of the instantaneous displacements of freely diffusing single molecules. We thus show that the diffusion of an average-sized protein in the mammalian cytoplasm and nucleus is spatially heterogeneous at the nanoscale, and that variations in local diffusivity correlate with the ultrastructure of the actin cytoskeleton and the organization of the genome, respectively. SMdM of differently charged proteins further unveils that the possession of positive, but not negative, net charges drastically impedes diffusion, and that the rate is determined by the specific subcellular environments. We thus unveil rich heterogeneities and charge effects in intracellular diffusion at the nanoscale.Isobaric labeling empowers proteome-wide expression measurements simultaneously across multiple samples. Here an expanded set of 16 isobaric reagents based on an isobutyl-proline immonium ion reporter structure (TMTpro) is presented. These reagents have similar characteristics to existing tandem mass tag reagents but with increased fragmentation efficiency and signal. In a proteome-scale example dataset, we compared eight common cell lines with and without Torin1 treatment with three replicates, quantifying more than 8,800 proteins (mean of 7.5 peptides per protein) per replicate with an analysis time of only 1.1 h per proteome. Finally, we modified the thermal stability assay to examine proteome-wide melting shifts after treatment with DMSO, 1 or 20 µM staurosporine with five replicates. This assay identified and dose-stratified staurosporine binding to 228 cellular kinases in just one, 18-h experiment. TMTpro reagents allow complex experimental designs-all with essentially no missing values across the 16 samples and no loss in quantitative integrity.Photobleaching limits extended imaging of fluorescent biological samples. We developed DNA-based 'FluoroCubes' that are similar in size to the green fluorescent protein, have single-point attachment to proteins, have a ~54-fold higher photobleaching lifetime and emit ~43-fold more photons than single organic dyes. We demonstrate that DNA FluoroCubes provide outstanding tools for single-molecule imaging, allowing the tracking of single motor proteins for >800 steps with nanometer precision.To image the accessible genome at nanometer scale in situ, we developed three-dimensional assay for transposase-accessible chromatin-photoactivated localization microscopy (3D ATAC-PALM) that integrates an assay for transposase-accessible chromatin with visualization, PALM super-resolution imaging and lattice light-sheet microscopy. Multiplexed with oligopaint DNA-fluorescence in situ hybridization (FISH), RNA-FISH and protein fluorescence, 3D ATAC-PALM connected microscopy and genomic data, revealing spatially segregated accessible chromatin domains (ACDs) that enclose active chromatin and transcribed genes. Using these methods to analyze genetically perturbed cells, we demonstrated that genome architectural protein CTCF prevents excessive clustering of accessible chromatin and decompacts ACDs. https://www.selleckchem.com/products/Y-27632.html These results highlight 3D ATAC-PALM as a useful tool to probe the structure and organizing mechanism of the genome.Clustered, regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) genes, a diverse family of prokaryotic adaptive immune systems, have emerged as a biotechnological tool and therapeutic. The discovery of protein inhibitors of CRISPR-Cas systems, called anti-CRISPR (Acr) proteins, enables the development of more controllable and precise CRISPR-Cas tools. Here we discuss applications of Acr proteins for post-translational control of CRISPR-Cas systems in prokaryotic and mammalian cells, organisms and ecosystems.Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) are key sensors of virus infection, mediating the transcriptional induction of type I interferons and other genes that collectively establish an antiviral host response. Recent studies have revealed that both viral and host-derived RNAs can trigger RLR activation; this can lead to an effective antiviral response but also immunopathology if RLR activities are uncontrolled. In this Review, we discuss recent advances in our understanding of the types of RNA sensed by RLRs in the contexts of viral infection, malignancies and autoimmune diseases. We further describe how the activity of RLRs is controlled by host regulatory mechanisms, including RLR-interacting proteins, post-translational modifications and non-coding RNAs. Finally, we discuss key outstanding questions in the RLR field, including how our knowledge of RLR biology could be translated into new therapeutics.The ability to produce recognizable depictions of objects from the natural world-known as figurative art-is unique to Homo sapiens and may be one of the cognitive traits that separates our species from extinct hominin relatives. Surviving examples of Pleistocene figurative art are generally confined to rock art or portable three-dimensional works (such as figurines) and images engraved into the surfaces of small mobile objects. These portable communicative technologies first appear in Europe some 40 thousand years ago (ka) with the arrival of H. sapiens. Conversely, despite H. sapiens having moved into Southeast Asia-Australasia by at least 65 ka, very little evidence for Pleistocene-aged portable art has been identified, leading to uncertainties regarding the cultural behaviour of the earliest H. sapiens in this region. Here, we report the discovery of two small stone 'plaquettes' incised with figurative imagery dating to 26-14 ka from Leang Bulu Bettue, Sulawesi. These new findings, together with the recent discovery of rock art dating to at least 40 ka in this same region, overturns the long-held belief that the first H. sapiens of Southeast Asia-Australasia did not create sophisticated art and further cements the importance of this behaviour for our species' ability to overcome environmental and social challenges.