https://www.selleckchem.com/products/ly2801653-merestinib.html Leidenfrost droplets can be considered as soft engines capable of directly transforming heat into mechanical energy. Despite remarkable advancements in understanding the propulsion of Leidenfrost droplets on asymmetric structures, the complex dynamics of droplets in enclosed structures is not fully understood. To address this fundamental gap, we investigated the dynamics of Leidenfrost droplets restricted by metal disks. The disk alters the accumulation and release of the vapour generated by the droplet, and substantially changes its dynamic characteristics. Our experiments reveal the formation of oscillating multi-lobed structures when restricting the droplet within a disk. In comparison, patterning offset radial grooves on the surface of the disk rectifies the vapour flow and facilitates the self-propulsion of the droplet along the edge of the disk. Our work offers opportunities for developing soft and short-living actuators, which can operate at high temperatures.We apply a combination of the Viscous Froth model and a surfactant transfer model [Zaccagnino et al., Phys. Rev. E, 2018, 98, 022801] to predict the rheological response of a two-dimensional dry aqueous foam. The model includes both the effect of friction between the foam and the boundaries of the container and also the dissipative effects on the film interfaces caused by surfactant motion. These dynamics are characterized by two free parameters the Gibbs elasticity, relating surfactant concentration to interfacial tension, and the mobility of the surfactant molecules on the interfaces. We employ numerical simulations to evaluate the static shear modulus, yield stress and the storage and loss moduli of a foam and investigate the effect of our free parameters on these rheological properties.Nematic polymer networks are (heat and light) activable materials, which combine the features of rubber and nematic liquid crystals. When only the stretchi