https://www.selleckchem.com/products/cpi-0610.html 3 to 3.0 ng L-1. The average recoveries were in the range of 92.9-113.6% and 86.0-99.3% for spiked water samples at 10 and 100 ng L-1 of each BFR. The intra- and inter-day relative standard deviations (n = 6) were less than 5.4% and 8.0%, respectively. The results demonstrated that the proposed method was highly sensitive, efficient and reliable for the determination of trace legacy and emerging BFRs in water samples.In this work, a sensitive, rapid, and matrix effect-free method for online simultaneous detection of benzimidazoles in animal products by in-tube solid-phase microextraction coupled with mass spectrometry (in-tube SPME-MS) was investigated. Herein, according to the chemical structures properites of the analyte benzimidazoles, poly (3-Acrylamidophenylboronic acid-co-divinylbenzene-co-N,N'-Methylenebisacryladmide) [poly (AAPBA-co-DVB-co-MBAA)] microextraction column was prepared, and severs as the extraction and enrichment medium (in-tube SPME) via hydrophobic, B-N coordination, π-π, and hydrogen bonding interactions with the benzimidazoles. The monolithic column was optimized and characterized, showing satisfactory permeability and extraction capacity in range of 514-1000 μg mL-1 for the benzimidazoles. The important parameters of the in-tube SPME-MS system experimental condition were systematically optimized to achieve the maximal extraction efficiency. Under the optimized condition, the MS intensity of benzimidazoles measured by in-tube SPME-MS is more significant, cleaner, and has a better signal-to-noise ratio than the mass intensity measured by direct MS method. Good linearity was obtained with correlation coefficients between 0.9915 and 0.9990, and the detection limits (S/N = 3) of the benzimidazoles were between 0.55 and 0.91 ng g-1. Recoveries in the range of 72.5%-92.4% were obtained for the benzimidazoles in pork and chicken in three spiked concentration levels, with satisfactory relative stand