https://www.selleckchem.com/products/defactinib.html Natural transformation is a mechanism that enables competent bacteria to acquire naked, exogenous DNA from the environment. It is a key process that facilitates the dissemination of antibiotic resistance and virulence determinants throughout bacterial populations. Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen that produces large quantities of extracellular DNA (eDNA) that is required for biofilm formation. P. aeruginosa has a remarkable level of genome plasticity and diversity that suggests a high degree of horizontal gene transfer and recombination but is thought to be incapable of natural transformation. Here we show that P. aeruginosa possesses homologues of all proteins known to be involved in natural transformation in other bacterial species. We found that P. aeruginosa in biofilms is competent for natural transformation of both genomic and plasmid DNA. Furthermore, we demonstrate that type-IV pili (T4P) facilitate but are not absolutely essential for natural transformation in P. aeruginosa.A novel bacterial strain, designated TBM-1T, isolated from a freshwater lake in Taiwan, was characterized using a polyphasic taxonomic approach. Phylogenetic analyses based on 16S rRNA gene sequences and coding sequences of 92 protein clusters indicated that strain TBM-1T formed a phylogenetic lineage in the genus Ideonella. Analysis of 16S rRNA gene sequences showed that strain TBM-1T was most closely related to Ideonella dechloratans CCUG 30898T with 98.4 % sequence similarity. The average nucleotide identity, average amino acid identity and digital DNA-DNA hybridization values between strain TBM-1T and closely related strains of the genus Ideonella were 74.4-77.5 %, 69.7-75.4 % and 19.8-21.8 %, respectively, supporting that strain TBM-1T represents a novel species of the genus Ideonella. Cells were Gram-stain-negative, motile by means of a single polar flagellum, rod-shaped and formed blue colonies.