Overall, AZD1222 vaccination induced a robust, polyfunctional Th1-dominated T-cell response, with broad CD4+ and CD8+ T-cell coverage across the SARS-CoV-2 spike protein. Polyfunctional CD4+ and CD8+ T-cell responses are elicited against the SARS-CoV-2 spike protein following vaccination with AZD1222. Polyfunctional CD4+ and CD8+ T-cell responses are elicited against the SARS-CoV-2 spike protein following vaccination with AZD1222.Hong Kong utilized an elimination strategy with intermittent use of public health and social measures and increasingly stringent travel regulations to control SARS-CoV-2 transmission. By analyzing >1700 genome sequences representing 17% of confirmed cases from 23-January-2020 to 26-January-2021, we reveal the effects of fluctuating control measures on the evolution and epidemiology of SARS-CoV-2 lineages in Hong Kong. Despite numerous importations, only three introductions were responsible for 90% of locally-acquired cases, two of which circulated cryptically for weeks while less stringent measures were in place. We found that SARS-CoV-2 within-host diversity was most similar among transmission pairs and epidemiological clusters due to a strong transmission bottleneck through which similar genetic background generates similar within-host diversity. Out of the 170 detected introductions of SARS-CoV-2 in Hong Kong during 2020, three introductions caused 90% of community cases. Out of the 170 detected introductions of SARS-CoV-2 in Hong Kong during 2020, three introductions caused 90% of community cases. The role of overcrowded and multigenerational households as a risk factor for COVID-19 remains unmeasured. The objective of this study is to examine and quantify the association between overcrowded and multigenerational households, and COVID-19 in New York City (NYC). We conducted a Bayesian ecological time series analysis at the ZIP Code Tabulation Area (ZCTA) level in NYC to assess whether ZCTAs with higher proportions of overcrowded (defined as proportion of estimated number of housing units with more than one occupant per room) and multigenerational households (defined as the estimated percentage of residences occupied by a grandparent and a grandchild less than 18 years of age) were independently associated with higher suspected COVID-19 case rates (from NYC Department of Health Syndromic Surveillance data for March 1 to 30, 2020). Our main measure was adjusted incidence rate ratio (IRR) of suspected COVID-19 cases per 10,000 population. Our final model controlled for ZCTA-level sociodemographic factnd COVID-19 disease in these populations. Over-crowdedness and multigenerational housing are independent risk factors for suspected COVID-19. In the early phase of surge in COVID cases, social distancing measures that increase house-bound populations may inadvertently but temporarily increase SARS-CoV-2 transmission risk and COVID-19 disease in these populations.There is strong evidence for brain-related pathologies in COVID-19, some of which could be a consequence of viral neurotropism. The vast majority of brain imaging studies so far have focused on qualitative, gross pathology of moderate to severe cases, often carried out on hospitalised patients. It remains unknown however whether the impact of COVID-19 can be detected in milder cases, in a quantitative and automated manner, and whether this can reveal a possible mechanism for the spread of the disease. UK Biobank scanned over 40,000 participants before the start of the COVID-19 pandemic, making it possible to invite back in 2021 hundreds of previously-imaged participants for a second imaging visit. Here, we studied the effects of the disease in the brain using multimodal data from 782 participants from the UK Biobank COVID-19 re-imaging study, with 394 participants having tested positive for SARS-CoV-2 infection between their two scans. We used structural and functional brain scans from before and after infectpost hoc disease studies, the availability of pre-infection imaging data helps avoid the danger of pre-existing risk factors or clinical conditions being mis-interpreted as disease effects. Since a possible entry point of the virus to the central nervous system might be via the olfactory mucosa and the olfactory bulb, these brain imaging results might be the in vivo hallmark of the spread of the disease (or the virus itself) via olfactory and gustatory pathways.Inflammation is the physiologic reaction to cellular and tissue damage caused by pathologic processes including trauma, infection, and ischemia 1 . Effective inflammatory responses integrate molecular and cellular functions to prevent further tissue damage, initiate repair, and restore homeostasis, while futile or dysfunctional responses allow escalating injury, delay recovery, and may hasten death 2 . Elevation of white blood cell count (WBC) and altered levels of other acute phase reactants are cardinal signs of inflammation, but the dynamics of these changes and their resolution are not established 3,4 . Patient responses appear to vary dramatically with no clearly defined signs of good prognosis, leaving physicians reliant on qualitative interpretations of laboratory trends 4,5 . We retrospectively, observationally studied the human acute inflammatory response to trauma, ischemia, and infection by tracking the longitudinal dynamics of cellular and serum markers in hospitalized patients. Unexpectedly, we identified a conserved pattern of recovery defined by co-regulation of WBC and platelet (PLT) populations. Across all inflammatory conditions studied, recovering patients followed a consistent WBC-PLT trajectory shape that is well-approximated by exponential WBC decay and delayed linear PLT growth. This recovery trajectory shape may represent a fundamental archetype of human physiologic response at the cellular population scale, and provides a generic approach for identifying high-risk patients 32x relative risk of adverse outcomes for cardiac surgery patients, 9x relative risk of death for COVID-19, and 5x relative risk of death for myocardial infarction. Several studies have reported SARS-CoV-2 outbreaks in schools, with a wide range of secondary attack rate (SAR; range 0-100%). We aimed to examine the key risk factors to better understand transmission in school settings. We collected records of SARS-CoV-2 school outbreaks globally published from January 2020 to January 2021 and compiled information on hypothesized risk factors. We utilized the directed acyclic graph (DAG) to conceptualize the risk mechanisms, used logistic regression to examine each risk-factor group, and further built multiple variable models based on the marginal analysis. https://www.selleckchem.com/products/ccs-1477-cbp-in-1-.html Adjusted odds ratios (aOR) and 95% confidence intervals (CI) were calculated. From 17 relevant articles, 26 school clusters were included for analysis. The best-fit model showed that the intensity of community transmission (aOR 1.26; 95% CI 1.22 - 1.30, for each increase of 10 cases per 100,000 persons per week), social distancing (aOR 0.26; 95% CI 0.18 - 0.37), mask-wearing (aOR 0.52; 95% CI 0.35 - 0.78) were associated the risk of SARS-CoV-2 infection in schools.