Potential negative effects associated with organic pollutants in snakes and their predators are also considered. Based on such discussions, research gaps and future perspectives on the utilization of snake biomonitoring studies are addressed, heading towards an effective monitoring and assessment scheme for a variety of legacy and emerging organic pollutants in the environment.As a vital stormwater pollution source, the pollutants associated with road-deposited sediment (RDS) have become a growing concern in urban water management. Green infrastructure has exhibited great potential in stormwater pollution mitigation, but is not comprehensively understood yet due to the influences of complex RDS-associated pollutant migration processes (i.e., build-up, wash-off, and discharge). In this study, a city-scale hydraulic and water quality model was used to analyze the migration and removal processes of four RDS-associated pollutants (total suspended solids (TSS), chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP)) under different hydrological patterns, land-cover types, and green infrastructure installation locations. Results show that the antecedent dry-weather period was the main factor influencing RDS build-up, while the precipitation pattern strongly impacted RDS wash-off, discharge, and removal. The downstream-installed green infrastructures reduced the RDS-induced stormwater pollution by up to 68% and relieved the pollution-mitigation pressure of the studied drainage networks by almost 50%. The TSS and COD removal rates were higher (62.22-68.09%) near green space, while those of TN and TP were higher around buildings and roads (40.00-62.50%). Sensitivity analysis indicated that seven parameters regarding the surface layer characteristics and soil texture class strongly impacted the pollution-mitigation performance among the 31 technical parameters of green infrastructure. The results of this study would assist urban water management by optimizing green infrastructure for stormwater pollution mitigation.Duckweed-based waste stabilization ponds (DWPs) have been widely used in wastewater treatment. However, the effects of sediment, an essential component of DWPs, on their performance have rarely been studied. In this study, two pilot-scale DWPs (12 m2) with sediment (DPS) and without sediment (DP) were evaluated over more than 1 year to determine the effects of sediment on duckweed growth, wastewater treatment, and greenhouse gas (GHG) production and emission in DWPs. The results indicated that the annual average duckweed growth rate were comparable, but protein content, carbon (C) and nitrogen (N) recovery rates of duckweed were slightly higher in the DPS than in the DP. Meanwhile, the dissolved oxygen (DO) and oxidation reduction potential (ORP), removal efficiencies of COD, TP, TN, NH4+-N, and turbidity of pond water from the DPS were significantly lower than for DP. More importantly, the DPS had considerably higher CH4 production/emission and global warming potential (GWP) than the DP, even though more than 90% of CH4 released from the sediment was consumed during its passage through the water column and duckweed layer. Sediment increased the recoveries of C and N by 7.94% and 8.82%, respectively. Influencing degree for COD, TP, TN, NH4+-N and turbidity were -27.92%, -20.98%, -22.61%, -24.13% and -14.91%, respectively; for pond water DO and ORP, the values were - 35.68% and -44.59%, respectively; and for CO2, CH4 and N2O emission and "combined GWP", they were 21.66%, 271.67%, -8.47% and 178.02%, respectively. Thus, this study indicates that sediment formed in the DWPs has a multi-faced effect on the performance of a DWP. In particular, sediment has an unfavourable effect on the wastewater treatment and the GHGs mitigation, but a favourable effect on the protein content and the C and N recoveries in duckweed.Cooking is one of the primary sources of particulate organic matter (POM) in urban environments. Numerous experiments have been performed to investigate the composition of POM generated during cooking. However, there still remain substantial uncertainties in our knowledge regarding the emission characteristics of alkyl polycyclic aromatic hydrocarbons (PAHs) from cooking. In addition, previous studies have selected several tracers for Chinese cooking; however, these results were acquired based on observations in the Pearl River Delta region of China, and only four of the eight Chinese cooking styles were tested. Therefore, the organic compositions of the PM2.5 emitted from four Chinese cooking restaurants in different cities are examined to investigate the emission characteristics of alkyl PAH and to verify whether the selected tracers vary with geographical location and cooking styles. In this study, C1- and C2-phenanthrenes/anthracenes, and C1-pyrenes were detected in the PM2.5 from the four tested restaurants, but the concentrations of these PAH alkyl homologues were all at low levels, and also much lower than the corresponding parent PAHs. However, the distribution pattern of the alkyl PAHs in the cooking fumes was significantly different from that in the PM from other emission sources. Additionally, some candidate tracers for cooking such as levoglucosan were less influenced by cooking styles or geographical location. Thus, these alkyl PAHs in conjunction with other specific tracers for cooking were utilized to estimate the contribution of cooking to ambient organic carbon. The results showed that the estimates from the chemical mass balance model that includes alkyl PAHs will be higher than the model that does not, and in the case of high alkyl PAHs ambient concentrations, the model that includes alkyl PAHs will provide more reasonable results.The saltmarsh plant Spartina alterniflora was introduced to the Jiangsu coasts, China and serves as an ecological engineer to reduce near-bed shear stress, trap fine-grained sediments and protect the coast from wave-induced erosion. The saltmarshes thus could record the Spartina colonization-driven changes within the sedimentary layers. Based on these ecological and sedimentological changes in sediments, we present a new eco-parametric method to estimate the sedimentation rate for the newly-formed wetlands in the Yancheng Wetland Nature Reserve for Rare Birds, Jiangsu. https://www.selleckchem.com/products/Sunitinib-Malate-(Sutent).html Sediment cores and satellite imagery were used to identify the thickness of accumulated sediment layers and the time since the Spartina colonization. We defined the original ground on which Spartina alterniflora initially colonized using pigment concentrations, grain size and stable carbon isotopic compositions of organic matter (δ13C) in sediments. We also determined the time mark of the Spartina colonization by examining the Landsat images over 1982-2018 to discriminate the Spartina alterniflora from other native plants and geomorphological features.