We introduce a novel dataset containing 3-dimensional biomechanical and wearable sensor data from 22 able-bodied adults for multiple locomotion modes (level-ground/treadmill walking, stair ascent/descent, and ramp ascent/descent) and multiple terrain conditions of each mode (walking speed, stair height, and ramp inclination). In this paper, we present the data collection methods, explain the structure of the open dataset, and report the sensor data along with the kinematic and kinetic profiles of joint biomechanics as a function of the gait phase. This dataset offers a comprehensive source of locomotion information for the same set of subjects to motivate applications in locomotion recognition, developments in robotic assistive devices, and improvement of biomimetic controllers that better adapt to terrain conditions. With such a dataset, models for these applications can be either subject-dependent or subject-independent, allowing greater flexibility for researchers to advance the field.Although the literature indicates children with autism spectrum disorder (ASD) walk at slower speeds and altered kinematics compared to neurotypical controls, no research has examined walking at matched speeds. This study examined biomechanical differences between adolescents with ASD and matched (age, sex, and body mass index) neurotypical controls. Lower extremity biomechanics of seventeen adolescents with ASD and seventeen controls were compared at matched speeds self-selected and a standardized 1.3 m/s. https://www.selleckchem.com/products/ak-7.html Controls exhibited greater eversion angles and hip abduction moments compared to those with ASD. This study found adolescents, which may have a more mature gait than young children, walk with a similar pattern in the propulsive plane (i.e. sagittal) as neurotypical controls, but with alterations in the supportive plane (i.e. frontal). Individuals with Sturge-Weber syndrome (SWS) often expereince intractable epilepsy and cognitive decline. We hypothesized that the extent of the leptomeningeal capillary malformation (LCM) may correlate with the severity of neurological impairment due to SWS. We tested the hypothesis in a cross-sectional study of seizure severity and electroencephalographic (EEG) findings and a retrospective cohort study for surgical indications related to the extent of the LCM. We enrolled 112 patients and classified them according to LCM distribution (1) bilateral, (2) hemispheric, (3) multilobar, and (4) single lobe. Age at seizure onset, seizure semiology and frequency, and EEG findings were compared. Surgical indications were evaluated for each group by Fisher exact test, and predictors for surgery were evaluated by univariate and multivariate analyses. Therapeutic efficacy was evaluated by the SWS-Neurological Score (SWS-NS). The bilateral and hemispheric groups had early seizure onset (4.0 months old and 3.0 months old), frequent seizures (88.9% and 80.6% had more than one per month), focal-to-bilateral tonic-clonic seizures (88.9% and 74.2%), and status epilepticus (100% and 87.1%). The groups' EEG findings did not differ substantially. Surgical indications were present in 77.8% of the bilateral, 88.1% of the hemispheric, and 46.8% of the multilobar groups. Seizure more than once per month was a predictor of surgical treatment. Seizure subscore improved postoperatively in the hemispheric and multilobar groups. Even after surgical treatment, the bilateral and hemispheric groups exhibited higher SWS-NSs than members of the other groups. Our study demonstrated a strong association between extensive LCM and epilepsy severity. Surgical intervention improved seizure outcome in patients with SWS with large LCMs. Our study demonstrated a strong association between extensive LCM and epilepsy severity. Surgical intervention improved seizure outcome in patients with SWS with large LCMs.Granulocyte colony-stimulating factor (G-CSF) is a cytokine most well-known for maturation and mobilization of bone marrow neutrophils. Although it is used therapeutically to treat chemotherapy induced neutropenia, it is also highly expressed in some tumors. Case reports suggest that tumors expressing high levels of G-CSF are aggressive, more difficult to treat, and present with poor prognosis and high mortality rates. Research on this topic suggests that G-CSF has tumor-promoting effects on both tumor cells and the tumor microenvironment. G-CSF has a direct effect on tumor cells to promote tumor stem cell longevity and overall tumor cell proliferation and migration. Additionally, it may promote pro-tumorigenic immune cell phenotypes such as M2 macrophages, myeloid-derived suppressor cells, and regulatory T cells. Overall, the literature suggests a plethora of pro-tumorigenic activity that should be balanced with the therapeutic use. In this review, we present an overview of the multiple complex roles of G-CSF and G-CSFR in tumors and their microenvironment and discuss how clinical advances and strategies may open new therapeutic avenues.The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the COVID-19 which has infected millions of people worldwide. The main protease of SARS-CoV-2 (MPro) has been recognized as a key target for the development of antiviral compounds. Taking advantage of the X-ray crystal complex with reversible covalent inhibitors interacting with the catalytic cysteine 145 (Cys145), we explored flexible docking studies to select alternative compounds able to target this residue as covalent inhibitors. First, docking studies of three known electrophilic compounds led to results consistent with co-crystallized data validating the method for SARS-CoV-2 MPro covalent inhibition. Then, libraries of soft electrophiles (overall 41 757 compounds) were submitted to docking-based virtual screening resulting in the identification of 17 molecules having their electrophilic group close to the Cys145 residue. We also investigated flexible docking studies of a focused approved covalent drugs library including 32 compounds with various electrophilic functional groups. Among them, the calculations resulted in the identification of four compounds, namely dimethylfumarate, fosfomycin, ibrutinib and saxagliptin, able first, to bind to the active site of the protein and second, to form a covalent bond with the catalytic cysteine.