The DEAH/RHA helicase DHX36 has been linked to cellular RNA and DNA quadruplex structures and to AU-rich RNA elements. In vitro, DHX36 remodels DNA and RNA quadruplex structures and unwinds DNA duplexes in an ATP-dependent manner. DHX36 contains the superfamily 2 helicase core and several auxiliary domains that are conserved in orthologs of the enzyme. The role of these auxiliary domains for the enzymatic function of DHX36 is not well understood. Here, we combine structural and biochemical studies to define the function of three auxiliary domains that contact nucleic acid. We first report the crystal structure of mouse DHX36 bound to ADP. The structure reveals an overall architecture of mouse DHX36 that is similar to previously reported architectures of fly and bovine DHX36. In addition, our structure shows conformational changes that accompany stages of the ATP-binding and hydrolysis cycle. We then examine the roles of the DHX36-specific motif (DSM), the OB-fold, and a conserved β-hairpin (β-HP) in mouse DHX36 in the remodeling of RNA structures. We demonstrate and characterize RNA duplex unwinding for DHX36 and examine the remodeling of inter- and intramolecular RNA quadruplex structures. We find that the DSM not only functions as a quadruplex binding adaptor but also promotes the remodeling of RNA duplex and quadruplex structures. The OB-fold and the β-HP contribute to RNA binding. Both domains are also essential for remodeling RNA quadruplex and duplex structures. Our data reveal roles of auxiliary domains for multiple steps of the nucleic acid remodeling reactions. Cells have evolved molecular chaperones that modulate phase separation and misfolding of amyloidogenic proteins to prevent neurodegenerative diseases. Protein disulfide isomerase (PDI), mainly located at the endoplasmic reticulum and also present in the cytosol, acts as both an enzyme and a molecular chaperone. PDI is observed to be S-nitrosylated in the brain of Alzheimer's disease patients, but the mechanism has remained elusive. We herein report that both wild-type PDI and its quadruple cysteine mutant only having chaperone activity, significantly inhibit pathological phosphorylation and abnormal aggregation of Tau in cells, and significantly decrease the mitochondrial damage and Tau cytotoxicity resulting from Tau aberrant aggregation, highlighting the chaperone property of PDI. More importantly, we show that wild-type PDI is selectively recruited by liquid droplets of Tau, which significantly inhibits phase separation and stress granule formation of Tau, whereas S-nitrosylation of PDI abrogates the recruitment and inhibition. These findings demonstrate how phase separation of Tau is physiologically regulated by PDI and how S-nitrosylation of PDI, a perturbation in this regulation, leads to disease. The assembly of basement membranes (BMs) into tissue-specific morphoregulatory structures requires non-core BM components. Work in Drosophila indicates a principal role of collagen-binding matricellular glycoprotein SPARC (Secreted Protein, Acidic, Rich in Cysteine) in larval fat body BM assembly. https://www.selleckchem.com/products/Erlotinib-Hydrochloride.html We report that SPARC and collagen IV (Col(IV)) first colocalize in the trans-Golgi of hemocyte-like cell lines. Mutating the collagen-binding domains of Drosophila SPARC led to the loss of colocalization with Col(IV), a fibrotic-like BM, and 2nd instar larval lethality, indicating that SPARC binding to Col(IV) is essential for survival. Analysis of this mutant at 2nd instar reveals increased Col(IV) puncta within adipocytes, reflecting a disruption in the intracellular chaperone-like activity of SPARC. Removal of the disulfide bridge in the C-terminal EF-hand2 of SPARC, which is known to enhance Col(IV) binding, did not lead to larval lethality; however, a less intense fat body phenotype was observed. Additionally, both SPARC mutants exhibited altered fat body BM pore topography. Wing imaginal disc-derived SPARC did not localize within Col(IV)-rich matrices. This raises the possibility that SPARC interaction with Col(IV) requires initial intracellular interaction to colocalize at the BM or that wing-derived SPARC undergoes differential post-translational modifications that impacts its function. Collectively, these data provide evidence that the chaperone-like activity of SPARC on Col(IV) begins just prior to their co-secretion and demonstrate for the first time that the Col(IV) chaperone-like activity of SPARC is necessary for Drosophila development beyond the 2nd instar. Mutational heterogeneity can contribute to therapeutic resistance in solid cancers. In melanoma, the frequency of inter- and intra-tumoral heterogeneity is controversial. We examined mutational heterogeneity within individual melanoma patients using multi-platform analysis of commonly mutated driver and non-passenger genes. We analyzed paired primary and metastatic tumors from 60 patients, and multiple metastatic tumors from 39 patients whose primary tumors were unavailable (n=271 tumors). We used a combination of multiplex SNaPshot assays, Sanger Sequencing, Mutation-specific PCR, or droplet digital PCR to determine the presence of BRAFV600, NRASQ61, and TERT-124C>T and TERT-146C>T mutations. Mutations were detected in BRAF (39%), NRAS (21%) and/or TERT (78%). Thirteen patients had TERTmutant discordant tumors; seven of these had a single tumor with both TERT-124C>T and TERT-146C>T mutations present at different allele frequencies. Two patients had both BRAF and NRAS mutations; one in different tumors and the other had a single tumor with both mutations. One patient with a BRAFmutant primary lacked mutant BRAF in least one of their metastases. Overall, we identified mutational heterogeneity in 18/99 (18%) patients. These results suggest that some primary melanomas may be comprised of subclones with differing mutational profiles. Such heterogeneity may be relevant to treatment responses and survival outcomes. NK-lysin is an important part of the innate immune defence system and plays an important role in resisting the invasion of pathogenic microorganisms. In this study, NK-lysin from golden pompano (Trachinotus ovatus) was characterized and its expression in response to Photobacterium damselae was investigated. The full-length NK-lysin cDNA was 731 bp, which comprised a 5'-UTR of 63 bp, an ORF of 444 bp, and a 3'-UTR of 224 bp, and encoded 147 amino acids; NK-lysin consisted of a conserved saposin B domain and six conserved cysteines that formed three pairs of disulfide bonds. The genomic organization of NK-lysin was also determined and the gene consisted of four introns and five exons. The predicted promoter region of ToNK-lysin contained several putative transcription factor binding sites. Quantitative real-time (qRT-PCR) analysis indicated that ToNK-lysin was ubiquitously expressed in all examined tissues; the highest mRNA levels were observed in the skin, kidney and intestine, while the lowest expression level was detected in the stomach.