https://www.selleckchem.com/products/azd0156-azd-0156.html Advancement of subject-specific in-silico medicine requires new imaging protocols tailored to specific anatomical features, paired with new constitutive model development based on structure/function relationships. In this study we develop a new dual-VENC 4D Flow MRI protocol that provides unprecedented spatial and temporal resolution of in-vivo aortic deformation. All previous dual-VENC 4D Flow MRI studies in the literature focus on an isolated segment of the aorta, which fail to capture the full spectrum of aortic heterogeneity that exists along the vessel length. The imaging protocol developed provides high sensitivity to all blood flow velocities throughout the entire cardiac cycle, overcoming the challenge of accurately measuring the highly unsteady non-uniform flow field in the aorta. Cross sectional area change, volumetric flow rate, and compliance are observed to decrease with distance from the heart, while pulse wave velocity is observed to increase. A non-linear aortic lumen pressure-area relationship is observed throughout the aorta, such that a high vessel compliance occurs during diastole, and a low vessel compliance occurs during systole. This clearly demonstrates that vessel compliance during a cardiac cycle cannot be simplistically represented by a single value. This high-resolution MRI data provides key information on the spatial variation in non-linear aortic compliance which can significantly advance the state-of-the-art of in-silico diagnostic techniques for the human aorta.Short bowel (SB) increases the risk of kidney stones. However, the underlying mechanism is unclear. Here, we examined how SB affected renal oxalate and citrate handlings for in vivo hyperoxaluric rats and in vitro tubular cells. SB was induced by small intestine resection in male Wistar rats. Sham-operated controls had no resection. After 7 days of recovery, the rats were divided into control, SB (both fed with distille