https://www.selleckchem.com/products/ap20187.html Efficient retrieval of synaptic vesicles (SVs) is crucial to sustain synaptic transmission. Protein interacting with C-kinase 1 (PICK1) is a unique PDZ (postsynaptic density-95/disc-large/zona-occluden-1)- and BAR (Bin-Amphiphysin-Rvs )-domain-containing protein that regulates the trafficking of postsynaptic glutamate receptors. It is also expressed in presynaptic terminals and is associated with the SVs; however, its role in regulating SV recycling remains unknown. Here, we show that PICK1 loss of function selectively slows the kinetics of SV endocytosis in primary hippocampal neurons during high-frequency stimulation. PICK1 knockdown also causes surface stranding and mislocalization of major SV proteins, synaptophysin and vGlut1, along the axon. A functional PDZ domain of PICK1 and its interaction with the core endocytic adaptor protein (AP)-2 are required for the proper targeting and clustering of synaptophysin. Furthermore, PICK1 and its interaction with AP-2 are required for efficient SV endocytosis and sustained glutamate release. Our findings, therefore, identify PICK1 as a key regulator of presynaptic vesicle recycling in central synapses.Neuromuscular junctions (NMJs) govern efficient neuronal communication with muscle cells, relying on proper architecture of specialized postsynaptic compartments. However, the intrinsic mechanism in muscle cells contributing to NMJ development remains unclear. In this study, we reveal that dynamin-2 (Dyn2) is involved in postsynaptic development of NMJs. Mutations of Dyn2 have been linked to human muscular disorder and centronuclear myopathy (CNM), as well as featured with muscle atrophy and defective NMJs, yet the function of Dyn2 at the postsynaptic membrane is largely unknown. We demonstrate that Dyn2 is enriched at the postsynaptic membrane and regulates NMJ development via actin remodeling. Dyn2 functions as an actin-bundling GTPase to regulate podosome turnover and cyt