https://www.selleckchem.com/products/zen-3694.html The physicochemical properties of room temperature ionic liquids (RTILs) consisting of bis(trifluoromethanesulfonyl)amide (TFSA- ) combined with 1-hexyl-1-methylpyrrolidinium (Pyr1,6 + ), 1-(butoxymethyl)-1-methylpyrrolidinium (Pyr1,1O4 + ), 1-(4-methoxybutyl)-1-methyl pyrrolidinium (Pyr1,4O1 + ), and 1-((2-methoxyethoxy)methyl)-1-methylpyrrolidinium (Pyr1,1O2O1 + ) were investigated using both experimental and computational approaches. Pyr1,1O2O1 TFSA, which contains two ether oxygen atoms, showed the lowest viscosity, and the relationship between its physicochemical properties and the position and number of the ether oxygen atoms was discussed by a careful comparison with Pyr1,1O4 TFSA and Pyr1,4O1 TFSA. Ab initio calculations revealed the conformational flexibility of the side chain containing the ether oxygen atoms. In addition, molecular dynamics (MD) calculations suggested that the ion distributions have a significant impact on the transport properties. Furthermore, the coordination environments of the Li ions in the RTILs were evaluated using Raman spectroscopy, which was supported by MD calculations using 1000 ion pairs. The presented results will be valuable for the design of functionalized RTILs for various applications.Pt-group metal (PGM) electrocatalysts with unique electronic structures and irreplaceable comprehensive properties play crucial roles in electrocatalysis. Anion engineering can create a series of PGM compounds (such as RuP2 , IrP2 , PtP2 , RuB2 , Ru2 B3 , RuS2 , etc.) that provide a promising prospect for improving the electrocatalytic performance and use of Pt-group noble metals. This review seeks the electrochemical activity origin of anion-modulated PGM compounds, and systematically analyzes and summarizes their synthetic strategies and energy-relevant applications in electrocatalysis. Orientation towards the sustainable development of nonfossil resources has stimulated a blossoming inte