https://www.selleckchem.com/products/Streptozotocin.html INTRODUCTION Crotonaldehyde (CR) is an electrophilic α,β-unsaturated aldehyde present in foods and beverages and is a minor metabolite of 1,3-butadiene. CR is a product of incomplete combustion, and is at high levels in smoke of cigarettes and structural fires. Exposure to CR has been linked to cardiopulmonary toxicity and cardiovascular disease. OBJECTIVE The purpose of this study was to examine the direct effects of CR in murine blood vessels (aorta and superior mesenteric artery, SMA) using an in vitro system. METHODS AND RESULTS CR induced concentration-dependent (1-300 μM) relaxations (75-80%) in phenylephrine (PE) precontracted aorta and SMA. Because the SMA was 20× more sensitive to CR than aorta (SMA EC50 3.8 ± 0.5 μM; aorta EC50 76.0 ± 2.0 μM), mechanisms of CR relaxation were studied in SMA. The CR-induced relaxation at low concentrations (1-30 μM) was inhibited by 1) mechanically-impaired endothelium; 2) Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME); 3) guanylyl cyclase (GC) inhibitor (ODQ); 4) transient receptor potential ankyrin-1 (TRPA1) antagonist (A967079); and, 5) by non-vasoactive level of nicotine (1 μM). Similarly, a TRPA1 agonist, allyl isothiocyanate (AITC; mustard oil), stimulated SMA relaxation dependent on TRPA1, endothelium, NO, and GC. Consistent with these mechanisms, TRPA1 was present in the SMA endothelium. CR, at higher concentrations (100-300 μM), induced tension oscillations (spasms) and irreversibly impaired contractility (a vasotoxic effect enhanced by impaired endothelium). CONCLUSIONS CR relaxation depends on a functional endothelium and TRPA1, whereas vasotoxicity is enhanced by endothelium dysfunction. Thus, CR is both vasoactive and vasotoxic along a concentration continuum. Spinal cord injury (SCI) is a severe central nervous system injury for which few efficacious drugs are available. Rosmarinic acid (RA), a water-soluble polyphenolic phytochemical, has antio