BACKGROUND The presence of liver metastasis correlates with poor therapeutic response of PD-1 blockade therapy in melanoma. A novel treatment protocol by combining cryoablation with transarterial infusion of pembrolizumab (CATAP) was proposed, and its feasibility and safety was assessed among this group of patients. METHODS This registered ambispective cohort study enrolled fifteen melanoma patients with multiple hepatic metastases who received planned two-stage CATAP therapy in the combined stage, subtotal cryoablation on day 1, in which one to two intrahepatic lesions were ablated completely with other lesions left untreated, sequentially combined transarterial infusion of pembrolizumab on day 3, every three weeks, for at least one cycle; in the infusion stage, arterial infusion of pembrolizumab was recommended at three-week interval until disease progression. The primary endpoint was objective response rate by RECIST (version 1.1); secondary end points included progression-free survival (PFS) and safety; eP therapy demonstrated positive clinical activity and a favorable safety profile for melanoma patients with liver metastasis.NK cells, which are composed of phenotypically and functionally heterogeneous subpopulations, play critical roles in immunity against cancer. The mechanism of generation of distinct subsets such as the effector and regulatory subtypes is unclear. https://www.selleckchem.com/products/sbc-115076.html Here, we show that this process comprises several steps, including generation of proliferating, highly cytotoxic cells activated by IL-15/IL-18 and differentiation into distinct cell populations induced with IL-12. Freshly prepared murine splenic NK cells expressed IL-15Rs and IL-18Rs and rapidly began to proliferate following stimulation with IL-15/IL-18. The proliferating NK cells highly expressed various activation markers such as B220, CD49b (DX5), lysosome-associated membrane glycoprotein 1 (LAMP-1), DNAX accessory molecule 1, perforin, and granzyme B and showed reduced expression of natural killer cell p46-related protein (NKp46) and IL-18Rα. These cells exerted strong cytotoxicity against YAC-1 cells, but did not secrete cytokines. IL-12 rapidly activated STAT4 in these cells, induced IFN-γ production, and then upregulated p21 and p27, leading to withdrawal from the cell cycle. In parallel, IL-12-stimulated cells gradually reduced cytotoxicity, decreased expression of activation markers, and instead increased expression of Sca-1, CD25, CD49a, and NKp46. Some IL-15/IL-18-induced cells strongly expressed PD-1, whereas NK cells induced with IL-15/IL-18 and IL-12 expressed high levels of T cell immunoglobulin mucin-3, LAG-3, and natural killer group 2 A. Furthermore, these cells spontaneously secreted IL-10 and TGF-β following prolonged incubation. Thus, IL-12 regulates expansion of NK cells activated with IL-15/IL-18, influences the population size of highly cytotoxic cells, and induces differentiation to unique cells sharing some phenotypes of ILCs.Raman spectroscopy is a fast and sensitive technique able to identify molecular changes in biological specimens. Herein, we report on three cases where Raman microspectroscopy was used to distinguish normal vs. oesophageal adenocarcinoma (OAC) (case 1) and Barrett's oesophagus vs. OAC (cases 2 and 3) in a non-destructive and highly accurate fashion. Normal and OAC tissues were discriminated using principal component analysis plus linear discriminant analysis (PCA-LDA) with 97% accuracy (94% sensitivity and 100% specificity) (case 1); Barrett's oesophagus vs. OAC tissues were discriminated with accuracies ranging from 98 to 100% (97-100% sensitivity and 100% specificity). Spectral markers responsible for class differentiation were obtained through the difference-between-mean spectrum for each group and the PCA loadings, where C-O-C skeletal mode in β-glucose (900 cm-1), lipids (967 cm-1), phosphodioxy (1296 cm-1), deoxyribose (1456 cm-1) and collagen (1445, 1665 cm-1) were associated with normal and OAC tissue differences. Phenylalanine (1003 cm-1), proline/collagen (1066, 1445 cm-1), phospholipids (1130 cm-1), CH2 angular deformation (1295 cm-1), disaccharides (1462 cm-1) and proteins (amide I, 1672/5 cm-1) were associated with Barrett's oesophagus and OAC tissue differences. These findings show the potential of using Raman microspectroscopy imaging for fast and accurate diagnoses of oesophageal pathologies and establishing subtle molecular changes predisposing to adenocarcinoma in a clinical setting. Graphical abstract Graphical abstract demonstrating how oesophageal tissue is processed through Raman mapping analysis in order to detect spectral differences between stages of oesophageal transformation to adenocarcinoma.Breath analysis is a promising method for metabolomics studies and clinical diagnosis, as it enables the observation of metabolites in a convenient and noninvasive way. In this work, an atmospheric pressure photoionization (APPI) source was modified for online analysis of exhaled breath by coupling with quadrupole time-of-flight mass spectrometry (QTOFMS). Three parameters, namely, the capillary voltage, the sampling flow and the curtain gas flow of the APPI source, were optimized. Five healthy volunteers, three males and two females, were enrolled to test the performance of modified APPI-QTOFMS by analyzing their exhaled breath. A total of 21 compounds were tentatively identified, and four metabolites, namely, dimethyl selenoxide, δ-valerolactam, hydroxymandelic acid and palmitic amide were detected in the exhaled breath for the first time. The result shows that modified APPI-QTOFMS can be used for the online study of exhaled breath. Graphical abstract.Celiac disease (CD) is a chronic autoimmune disorder induced in genetically susceptible individuals by the ingestion of gluten from wheat, rye, barley, or certain varieties of oats. A careful diet follow-up is necessary to avoid health complications associated with long-term gluten intake by the celiac patients. Small peptides (GIP, gluten immunogenic peptides) derived from gluten digestion, which are excreted in the urine and feces, have emerged as promising biomarkers to monitor gluten intake. We have implemented a simple and sensitive label-free point-of-care (POC) device based on surface plasmon resonance for the direct detection of these biomarkers in urine. The assay employs specific monoclonal antibodies and has been optimized for the detection of the 33-mer α2-gliadin, known as the main immunogenic peptide of wheat gluten, and for the detection of GIP. Direct detection in undiluted urine has been accomplished by using biosensing chips containing a robust and stable biorecognition layer, obtained after carefully optimizing the biofunctionalization protocol.