Vaccination is an effective method to prevent the spread of infectious diseases. In this paper, we develop an SIVS epidemic model with degree-related transmission rates and imperfect vaccination on scale-free networks. Firstly, we derive two threshold parameters and existence conditions of multiple endemic equilibria. Secondly, not only the global asymptotical stability of disease-free equilibrium and the persistence of the disease are derived, but also the global attractivity of the unique endemic equilibrium is proved using the monotone iterative technique. Thirdly, the effects of various immunization schemes including uniform immunization, targeted immunization and acquaintance immunization are studied, and the optimal vaccination strategy is analyzed by Pontryagin's maximum principle. Finally, we perform numerical simulations to verify these theoretical results. © Springer Nature B.V. 2019.Context Norway spruce (Picea abies) is one of the most widespread tree species in Europe's forests. Due to its high economic value it has been strongly favored by management, especially at the trailing edge of its natural distribution. However, disturbances from wind and bark beetles are increasingly impacting these forests, and their resilience under climate change has been called into question recently. Objectives We quantified the effects of landscape configuration and composition on (1) the risk from natural disturbances, and (2) on the overall resilience of Norway spruce to changing climate at the trailing edge. Methods We simulated the dynamics of a 9183 ha forest landscape in Eastern Austria over 190 years. We used the simulation model iLand to experimentally study a wide range of landscape compositions and configurations under five different climate scenarios. Results Natural disturbances increased considerably under all future climate scenarios. Dispersing Norway spruce throughout the landscape in mixed stands resulted in the highest levels of climate resilience. Reducing the percentage of Norway spruce on the landscape increased the resilience of the remaining Norway spruce trees, yet landscape configuration generally had a stronger effect on resilience than composition. Conclusions The resilience of Norway spruce at the trailing edge of its distribution is challenged by climate change, and considerable efforts are needed to sustain these ecosystems. While currently discussed adaptation measures focus largely on the stand level, we show that modifying landscape composition and configuration can be used to foster Norway spruce resilience while maintaining socio-economically relevant proportions of Norway spruce. © The Author(s) 2020.Vibrational spectroscopy is a very suitable tool for investigating the plant cell wall in situ with almost no sample preparation. The structural information of all different constituents is contained in a single spectrum. Interpretation therefore heavily relies on reference spectra and understanding of the vibrational behavior of the components under study. For the first time, we show infrared (IR) and Raman spectra of dibenzodioxocin (DBDO), an important lignin substructure. A detailed vibrational assignment of the molecule, based on quantum chemical computations, is given in the Supporting Information; the main results are found in the paper. Furthermore, we show IR and Raman spectra of synthetic guaiacyl lignin (dehydrogenation polymer-G-DHP). Raman spectra of DBDO and G-DHP both differ with respect to the excitation wavelength and therefore reveal different features of the substructure/polymer. This study confirms the idea previously put forward that Raman at 532 nm selectively probes end groups of lignin, whereas Raman at 785 nm and IR seem to represent the majority of lignin substructures. © 2020 The Authors. Journal of Raman Spectroscopy published by John Wiley & Sons Ltd.Abstract There is an ongoing debate about whether simultaneous hermaphrodites capable of selfing should prefer selfing over outcrossing or vice versa. While many theoretical models predict a transmission advantage for alleles that favour selfing, empirical studies often reveal low selfing rates. Despite these considerations, the underlying mechanisms that determine reproductive strategies in simultaneously hermaphroditic animals are poorly understood. In our study on the facultatively selfing free-living flatworm, Macrostomum hystrix, we ask whether the initiation of selfing, as inferred from the differential spatial distribution of received sperm, is linked to an individual's female or male reproductive function. https://www.selleckchem.com/products/u73122.html Specifically, the initiation of selfing could (i) be linked to the male function, when an individual is unable to donate sperm to others and hence donates sperm to self, or it could (ii) be linked to the female function, when an individual fails to receive sperm from others-and hence is unable to fe. By manipulating the social environment of focal individuals, we here provide evidence that explores the respective role that the co-occurring male and female sex functions have on the initiation of selfing in a simultaneously hermaphroditic flatworm species. Specifically, our results suggest that the initiation of selfing is linked to the worm's male function. Insights about which function is linked to the initiation of selfing may ultimately help to better understand reproductive decisions in simultaneous hermaphrodites. © The Author(s) 2020.High-resolution imaging modalities play a critical role for advancing biomedical sciences. Recently, x-ray luminescence computed tomography (XLCT) imaging was introduced as a hybrid molecular imaging modality that combines the high-spatial resolution of x-ray imaging and molecular sensitivity of optical imaging. The narrow x-ray beam based XLCT imaging has been demonstrated to achieve high spatial resolution, even at depth, with great molecular sensitivity. Using a focused x-ray beam as the excitation source, orders of magnitude of increased sensitivity has been verified compared with previous methods with a collimated x-ray beam. In this work, we demonstrate the high-spatial resolution capabilities of our focused x-ray beam based XLCT imaging system by scanning two sets of targets, differing in the target size, embedded inside of two tissue-mimicking cylindrical phantoms. Gd2O2SEu3+ targets of 200 µm and 150 µm diameters were created and embedded with the same edge-to-edge distances as their diameters respectively.