https://www.selleckchem.com/products/OSI-906.html The most environmentally abundant bromophenol congener, 2,4,6-tribromophenol (2,4,6-TBP, 6.06 μmol/L), was exposed to rice for 5 d both in vivo (intact seedling) and in vitro (suspension cell) to systematically characterize the fate of its sulfation and glycosylation conjugates in rice. The 2,4,6-TBP was rapidly transformed to produce 6 [rice cells (3 h)] and 8 [rice seedlings (24 h)] sulfated and glycosylated conjugates. The predominant sulfation conjugate (TP408, 93.0-96.7%) and glycosylation conjugate (TP490, 77.1-90.2%) were excreted into the hydroponic solution after their formation in rice roots. However, the sulfation and glycosylation conjugates presented different translocation and compartmentalization behaviors during the subsequent Phase III metabolism. Specifically, the sulfated conjugate could be vertically transported into the leaf sheath and leaf, while the glycosylation conjugates were sequestered in cell vacuoles and walls, which resulted in exclusive compartmentalization within the rice roots. These results showed the micromechanisms of the different compartmentalization behaviors of 2,4,6-TBP conjugates in Phase III metabolism. Glycosylation and sulfation of the phenolic hydroxyl groups orchestrated by plant excretion and Phase III metabolism may reduce the accumulation of 2,4,6-TBP and its conjugates in rice plants.For effective treatment and reuse of wastewater, removal of organochlorines is an important consideration. Oxidation or reduction of these compounds by one-component free radicals is difficult because of the high-energy barrier. Theoretical calculations predict that redox synergy can significantly lower the energy barriers. Hence, we developed an energy-efficient dual photoelectrode photoelectrochemical system wherein the oxidized and reduced radicals coexist. Taking p-chloroaniline as an example, the atomic hydrogen first initiates nucleophilic hydrodechlorination to form a critical in