https://www.selleckchem.com/products/dzd9008.html We present the new and entirely mechanistic COSMOperm method to predict passive membrane permeabilities for neutral compounds, as well as anions and cations. The COSMOperm approach is based on compound specific free energy profiles within a biomembrane of interest from COSMO-RS (Conductor-like Screening Model for Realistic Solvation) calculations. These are combined with membrane layer specific diffusion coefficients, for example, in the water phase, the polar head groups and the alkyl tails of biochemical phospholipid bilayers. COSMO-RS utilizes first-principle quantum chemical structures and physically sound intermolecular interactions (electrostatic, hydrogen bond and van der Waals). For this reason, it is unbiased towards different application scenarios, such as cosmetics, industrial chemical or pharmaceutical industries. A fully predictive calculation of passive permeation through phospholipid bilayer membranes results in a performance of r2 = 0.92; rmsd = 0.90 log10 units for neutral compounds and anions, as compared to gold standard black lipid membrane (BLM) experiments. It will be demonstrated that new membrane types can be generated by the related COSMOplex method and directly used for permeability studies by COSMOperm.Electrochemical monitoring of catalytically amplified collisions of individual metal nanoparticles (NP) with ultramicroelectrodes (UME) has been extensively used to study electrocatalysis, mass-transport, and charge-transfer processes at the single NP level. More recently, photoelectrochemical collision experiments were carried out with semiconductive NPs. Here, we introduce two new types of light-controlled nanoimpact experiments. The first experiment involves localized photodeposition of catalyst (Pt) on TiO2 NPs with a glass-sheathed carbon fiber simultaneously serving as the light guide and collector UME. The collisions of in situ prepared Pt@TiO2 NPs with the carbon surface produced blip