https://www.selleckchem.com/products/lxs-196.html Cyanobacteria are globally important primary producers and nitrogen fixers. They are frequently limited by iron bioavailability in natural environments that often fluctuate due to rapid consumption and irregular influx of external Fe. Here we identify a succession of physiological changes in Synechocystis sp. PCC 6803 occurring over 14-16 days of iron deprivation and subsequent recovery. We observe several adaptive strategies that allow cells to push their metabolic limits under the restriction of declining intracellular Fe quotas. Interestingly, cyanobacterial populations exposed to prolonged iron deprivation showed discernible heterogeneity in cellular auto-fluorescence during the recovery process. Using FACS and microscopy techniques we revealed that only cells with high auto-fluorescence were able to grow and reconstitute thylakoid membranes. We propose that ROS-mediated damage is likely to be associated with the emergence of the two subpopulations, and, indeed, a rapid increase in intracellular ROS content was observed during the first hours following iron addition to Fe-starved cultures. These results suggest that an increasing iron supply is a double-edged sword - posing both an opportunity and a risk. Therefore, phenotypic heterogeneity within populations is crucial for the survival and proliferation of organisms facing iron fluctuations within natural environments.l-rhamnose is found in nature mainly as a component of structural plant polysaccharides and can be used as a carbon source by certain microorganisms. Catabolism of this sugar in bacteria, archaea and fungi occurs by two routes involving either phosphorylated or non-phosphorylated intermediates. Unlike the corresponding pathway in yeasts, the metabolic details of the non-phosphorylated pathway in filamentous fungi are not fully defined. The first three genes (lraA, lraB and lraC) of the non-phosphorylated pathway in Aspergillus nidulans have recentl