Vector beams contain complex polarization structures and they are inherently non-separable in the polarization and spatial degrees of freedom. The spatially variant polarizations of vector beams have enabled many important applications in a variety of fields ranging from classical to quantum physics. In this study, we designed and realized a setup based on Mach-Zehnder interferometer for achieving the vector beams at arbitrary points of higher-order Poincaré sphere, through manipulating two eigenstates in the Mach-Zehnder interferometer system with the combined spiral phase plate. We demonstrated the generation of different kinds of higher-order Poincaré beams, including the beams at points on a latitude or longitude of higher-order Poincaré sphere, Bell states for |l| = 1 and |l| = 2, radially polarized beams of very high order with l = 16, etc. Vector beams of high quality and good accuracy are experimentally achieved, and the flexibility, feasibility and high efficiency of the setup are demonstrated by the practical performance.Focus-tunable lenses are indispensable to optical systems. This paper proposes an electrically modulated varifocal metalens combined with twisted nematic liquid crystals. In our design, a metalens is employed to focus on different points depending on the polarization state of incident light. We demonstrated that the varifocal metalens has a sub-millisecond response time. Furthermore, the numerical aperture of both the first and second focal points can be customized to achieve a wide range of 0.2-0.7. Moreover, the full width at half maximum approached the diffraction limit at multiple focal points. https://www.selleckchem.com/products/jsh-23.html Because of the advantages of our proposed electrically modulated metalens, it has the potential for application in optical technology and biomedical science, both of which require high image quality and a rapid response time.We report for the first time the resurgence of regenerated fiber Bragg gratings (RFBGs) useful for ultra-high temperature measurements exceeding 1400 °C. A detailed study of the dynamics associated with grating regeneration in six-hole microstructured optical fibers (SHMOFs) and single mode fibers (SMFs) was conducted. Rapid heating and rapid cooling techniques appeared to have a significant impact on the thermal sustainability of the RFBGs in both types of optical fibers reaching temperature regimes exceeding 1400 °C. The presence of air holes sheds new light in understanding the thermal response of RFBGs and the stresses associated with them, which governs the variation in the Bragg wavelength.We demonstrate spectrally-tunable Fabry-Perot bandpass filters operating across the MWIR by utilizing the phase-change material GeSbTe (GST) as a tunable cavity medium between two (GeSi) distributed Bragg reflectors. The induced refractive index modulation of GST increases the cavity's optical path length, red-shifting the passband. Our filters have spectral-tunability of ∼300 nm, transmission efficiencies of 60-75% and narrowband FWHMs of 50-65 nm (Q-factor ∼70-90). We further show multispectral thermal imaging and gas sensing. By matching the filter's initial passband to a CO2 vibrational-absorption mode (∼4.25 µm), tunable atmospheric CO2 sensing and dynamic plume visualization of added CO2 is realized.In this study, a large-aperture hole-patterned liquid crystal (LHLC) lens was prepared from a mixture of nematic liquid crystal (NLC, E7) and organic material (N-benzyl-2-methyl-4-nitroaniline, BNA). The electro-optic properties of doped and undoped samples were measured, compared, and analyzed. The doped sample exhibited a response time that was ∼6 times faster than that of the undoped sample because BNA doping decreased the rotational viscosity of the NLC. BNA dopant effectively suppressed the RMS error of LHLC lens addressed at the high voltage. Furthermore, the BNA dopant revealed a considerable absorbance for short wavelengths ( less then 450 nm), automatically providing the LHLC lens with a blue light filtering function for ophthalmic applications.The introduction of the fast Fourier transform (FFT) constituted a crucial step towards a faster and more efficient physio-optics modeling and design, since it is a faster version of the Discrete Fourier transform. However, the numerical effort of the operation explodes in the case of field components presenting strong wavefront phases-very typical occurrences in optics- due to the requirement of the FFT that the wrapped phase be well sampled. In this paper, we propose an approximated algorithm to compute the Fourier transform in such a situation. We show that the Fourier transform of fields with strong wavefront phases exhibits a behavior that can be described as a bijective mapping of the amplitude distribution, which is why we name this operation "homeomorphic Fourier transform." We use precisely this characteristic behavior in the mathematical approximation that simplifies the Fourier integral. We present the full theoretical derivation and several numerical applications to demonstrate its advantages in the computing process.We report a novel single-cavity dual-wavelength laser that has two distributed Bragg reflector (DBR) gratings at each side of a gain section for THz communication applications. By varying the inject current of one of the DBR gratings, the optical beat frequency of the laser can be widely tuned. In the device, a high-speed electro-absorption modulator (EAM) is also integrated and can be used for up to 25 Gb/s data modulation.Expressions of Goos-Hänchen and Imbert-Fedorov shifts of rotational 2-D finite energy Airy beams are introduced in this paper. The influences of the second-order terms of the reflection coefficient on the spatial Goos-Hänchen shift (GHS) and spatial Imbert-Fedorov shift (IFS) of rotational 2-D finite energy Airy beams are theoretically and numerically investigated at the surface between air and weakly absorbing medium for the first time. It is found that the axial symmetry of the initial field of beams has huge influences on GHS and IFS and both of the GHS and IFS can be controlled by adjusting the rotation angle of the initial field distribution.