https://www.selleckchem.com/products/omaveloxolone-rta-408.html A genetically modified, recombinant form of Newcastle disease virus (rNDV) undergoes ionic strength-dependent changes in morphology, as observed by cryo-electron microscopy (cEM). In hypotonic solutions with ionic strengths ranging from  less then  0.01 to 0.02 M, rNDV virions are spherical or predominantly spherical. In isotonic and hypertonic solutions, rNDV displays pleomorphism and contains a mixed population of spherical and elongated particles, indicating that a change from spherical to elongated shape is induced with increasing salt concentration. This ionic strength-dependent transition is largely reversible, as determined by cEM. Concomitantly, we measured infectious titers of these same rNDV samples at different ionic strengths using a fluorescent focus assay (FFA). The infectivity of oncolytic rNDV was found to be independent of ionic strength, ranging from 0.01 M to approximately 0.5 M. These structural and functional observations, in combination, suggest that infectivity (and, by inference, oncolation, relevant to clinical testing, infectivity and, therefore, oncolytic activity will not be compromised despite morphological heterogeneity.Key to the viral dissemination strategy of human cytomegalovirus (HCMV) is the induction of monocyte survival, where monocytes are normally short-lived cells. Autophagy is a cellular process that preserves cellular homeostasis and promotes cellular survival during times of stress. We found that HCMV rapidly induced autophagy within infected monocytes. The early induction of autophagy during HCMV infection was distinctly required for the survival of HCMV-infected monocytes, as repression of autophagosome formation led to cellular death of infected cells but had no effect on the viability of uninfected monocytes. The inhibition of caspases was insufficient to rescue cell viability of autophagy-repressed infected monocytes, suggesting that autophagy was not pro