The variant interrupts a highly conserved residue, p.(R1059H), in IFT122 and likely impairs its function. Variants in IFT122 have not been associated with retinal degeneration in mammals, but the loss of ift122 in zebrafish larvae impaired opsin transport and resulted in progressive photoreceptor degeneration. Our study establishes a new spontaneous dog model to study the role of IFT122 in RP biology, while the affected breed will benefit from a genetic test for a recessive condition.Fever without source (FWS) in infants is a frequent cause of consultation at the emergency department, and the emergence of SARS-CoV-2 could affect the approach to those infants. The aim of this study is to define the clinical characteristics and rates of bacterial coinfections of infants less then  90 days with FWS as the first manifestation of SARS-CoV-2 infection. This is a cross-sectional study of infants under 90 days of age with FWS and positive SARS-CoV2 PCR in nasopharyngeal swab/aspirate, attended at the emergency departments of 49 Spanish hospitals (EPICO-AEP cohort) from March 1 to June 26, 2020. Three hundred and thirty-three children with COVID-19 were included in EPICO-AEP. https://www.selleckchem.com/products/fhd-609.html A total of 67/336 (20%) were infants less than 90 days old, and 27/67(40%) presented with FWS. Blood cultures were performed in 24/27(89%) and were negative in all but one (4%) who presented a Streptococcus mitis bacteremia. Urine culture was performed in 26/27(97%) children and was negative in all, except in two (7%) patiennosis is scarce. What is New • SARS-CoV-2 infection should be ruled out in young infants ( less then  90 days of age) with FWS in areas with community transmission. • Bacterial coinfection rarely coexists in those infants. • Inflammatory markers were not increased in children without bacterial coinfection. • Outcome is good in most patients.Pressure ulcers are localized sites of tissue damage which form due to the continuous exposure of skin and underlying soft tissues to sustained mechanical loading, by bodyweight forces or because a body site is in prolonged contact with an interfacing object. The latter is the common cause for the specific sub-class of pressure ulcers termed 'medical device-related pressure ulcers', where the injury is known to have been caused by a medical device applied for a diagnostic or therapeutic purpose. Etiological research has established three key contributors to pressure ulcer formation, namely direct cell and tissue deformation, inflammatory edema and ischemic damage which are typically activated sequentially to fuel the injury spiral. Here, we visualize and analyze the above etiological mechanism using a new cell-scale modeling framework. Specifically, we consider here the deformation-inflicted and inflammatory contributors to the damage progression in a medical device-related pressure ulcer scenario, forming under a continuous positive airway pressure ventilation mask at the microarchitecture of the nasal bridge. We demonstrate the detrimental effects of exposure to high-level continuous external strains, which causes deformation-inflicted cell damage almost immediately. This in turn induces localized edema, which exacerbates the cell-scale mechanical loading state and thereby progresses cell damage further in a nonlinear, escalating pattern. The cell-scale quantitative description of the damage cascade provided here is important not only from a basic science perspective, but also for creating awareness among clinicians as well as industry and regulators with regards to the need for improving the design of skin-contacting medical devices.Among the several alcohol dehydrogenases, PQQ-dependent enzymes are mainly found in the α, β, and γ-proteobacteria. These proteins are classified into three main groups. Type I ADHs are localized in the periplasm and contain one Ca2+-PQQ moiety, being the methanol dehydrogenase (MDH) the most representative. In recent years, several lanthanide-dependent MDHs have been discovered exploding the understanding of the natural role of lanthanide ions. Type II ADHs are localized in the periplasm and possess one Ca2+-PQQ moiety and one heme c group. Finally, type III ADHs are complexes of two or three subunits localized in the cytoplasmic membrane and possess one Ca2+-PQQ moiety and four heme c groups, and in one of these proteins, an additional [2Fe-2S] cluster has been discovered recently. From the bioinorganic point of view, PQQ-dependent alcohol dehydrogenases have been revived recently mainly due to the discovery of the lanthanide-dependent enzymes. Here, we review the three types of PQQ-dependent ADHs with special focus on their structural features and electron transfer processes. The PQQ-Alcohol dehydrogenases are classified into three main groups. Type I and type II ADHs are located in the periplasm, while type III ADHs are in the cytoplasmic membrane. ADH-I have a Ca-PQQ or a Ln-PQQ, ADH-II a Ca-PQQ and one heme-c and ADH-III a Ca-PQQ and four hemes-c. This review focuses on their structural features and electron transfer processes.A series of Fe(II) complexes (1-4) and Fe(III) complexes (5-8) from Fe(II)/(III) chloride and N-(8-quinolyl)-X-salicylaldimine Schiff base ligands (Hqsal-X2/X X = Br, Cl) were successfully synthesized and characterized by spectroscopic (FT-IR, 1H-NMR), mass spectrometry, thermogravimetric analysis (TGA), and single crystal X-ray crystallographic techniques. The interaction of complexes 1-8 with calf thymus DNA (CT-DNA) was determined by UV-Vis and fluorescence spectroscopy. The complexes exhibited good DNA-binding activity via intercalation. The molecular docking between a selected complex and DNA was also investigated. The in vitro anticancer activity of the Schiff base ligands and their complexes were screened against the A549 human lung adenocarcinoma cell line. The complexes showed anticancer activity toward A549 cancer cells while the free ligands and iron chloride salts showed no inhibitory effects at 100 µM. In this series, complex [Fe(qsal-Cl2)2]Cl 6 showed the highest anticancer activity aginst A549 cells (IC50 = 10 µM). This is better than two well-known anticancer agents (Etoposide and Cisplatin). Furthermore, the possible mechanism for complexes 1-8 penetrating A549 cells through intracellular ROS generation was investigated. The complexes containing dihalogen substituents 1, 2, 5, and 6 can increase ROS in A549 cells, leading to DNA or macromolecular damage and cell-death induction.