Down-regulation of LINC01694 slowed down the proliferation and invasion in GBC cells and accelerated the apoptosis. DLR assay indicated that LINC01694 elevated Sox4 expression by regulating miR-340-5p. LINC01694 functioned as miR-340-5p sponge to inhibit Sox4 expression. CONCLUSION LINC01694 level is elevated in GBC by regulating miR-340-5p\Sox4 axis, which indicates the poor prognosis of the patients. Copyright 2020 The Author(s).In the present study, the photophysical properties and preliminary time-dependent density functional theory (TD-DFT) data of new rhenium(i) polypyridyl compounds, fac-[Re(L)(Am2phen)(CO)3]0/+, where Am2phen = 4,7-diamine-1,10-phenanthroline and L = Cl and ethyl isonicotinate (et-isonic), provided new insights into excited-state deactivation through an unusual inversion between two metal-to-ligand charge-transfer excited states. https://www.selleckchem.com/products/AdipoRon.html In addition, their cellular uptake using breast cancer (MCF-7) and melanoma (SkMel-147 and SkMel-29) cell lines and bioactivity were investigated and their cell-killing mechanism and protein expression were also studied. Preliminary TD-DFT results showed that both compounds exhibited a strong and broad absorption band around 300-400 nm which corresponds to a combination of ILAm2phen and MLCTRe→Am2phen transitions, and a strong contribution of charge transfer transition MLCTRe→et-isonic for fac-[Re(et-isonic)(Am2phen)(CO)3]+ is also observed. In contrast to typical Re(i) polypyridyl coment groups on polypyridyl ligands which are relevant to practical development.Inorganic ferroelectric perovskite oxides are more stable than hybrid perovskites. However, their solar energy harvesting efficiency is not so good. Here, by constructing a series of BiFeO3-based devices (solar cells), we investigated three factors that influence the photovoltaic performance, namely, spontaneous polarization, terminated ion species in the interface between BiFeO3 and the electrode, and polarized light irradiation. This work was carried out under the framework of the density functional theory combined with the non-equilibrium Green's function theory under a built-in electric field or finite bias. The results showed that (1) the photocurrent is larger only under a suitable electronic band gap rather than larger spontaneous polarization; (2) the photocurrent reaches the largest value in the Bi3+ ion-terminated interface than in the case of Fe3+ or O2- with the SrTiO3 electrode; (3) the photocurrent can be largely enhanced if the polarized direction of the monochromatic light is perpendicular to the spontaneous polarization direction. These results would deepen the understanding of some experimental results of BiFeO3-based solar cells.Electric control of magnetism by resistive switching is a simple and efficient approach to manipulate magnetism. However, the mechanism of magnetism manipulation by resistive switching is not well understood. Detailed characterization was performed to investigate the mechanism of magnetization changes with resistance state. We achieved a reversible and nonvolatile control of magnetization in a Co-Fe-Ta-B-O film at room temperature by resistive switching. It is found that a higher saturation magnetization could be attributed to the formation of a conducting filament rich in the reductive state of iron when the device is switched to low resistance. This work might provide a new insight to achieve magnetoelectric coupling.Optical measurements (absorbance and fluorescence) are widely used to track dissolved organic matter (DOM) quantity and quality in natural and engineered systems. Despite many decades of research on the optical properties of DOM, there is a lack of understanding with regards to the underlying photophysical model that is the basis for these optical properties. This review both summarizes advances to date on the photophysical properties of DOM and seeks to critically evaluate the photophysical models for DOM optical properties. Recent studies have refined the quantitative understanding of DOM photophysical properties such as excited state lifetimes and energies, rates of different photophysical processes, and quantum yields. Considering fundamental models, more clarity is needed on whether DOM photophysical processes are due to a superposition of non-interacting components (superposition model), or whether a portion of optical signals can be ascribed to electronically interacting moieties, for example in the form of electron donor-acceptor complexes (charge transfer model). Multiple studies over more than two decades have provided evidence for the charge transfer model. Questions have been raised, however, about the broad applicability of the charge transfer model. The charge transfer and superposition model are critically reviewed in light of this current research. Recommendations are given for future studies to help clarify the accuracy of these competing photophysical models.Two-dimensional (2D) layered Ti2C MXene has been synthesized experimentally, and the magnetism of monolayer Ti2C MXene has been predicted theoretically. In this study, based on first-principles calculations, five magnetic configurations of monolayer Ti2C were constructed to predict the magnetic ground state. We have found that the antiferromagnetic (AFM) state has the lowest energy. By applying an external electric field, monolayer Ti2C changes from an AFM semiconductor to a ferrimagnetic (FIM) semiconductor, half-metal, magnetic metal, non-magnetic (NM) metal, and NM semiconductor. When the electric field increases beyond a certain value, the magnetic moments of Ti atoms sharply decrease. With the increase in the electric field, the effective masses decrease significantly, carrier mobility increases and conductivity increases. The magnetic anisotropy energies were calculated and the results showed that the out-of-plane direction was the magnetic easy axis. Using the mean-field approximation method, the Néel temperature of monolayer Ti2C is estimated to be 50 K. By applying an electric field, the Néel temperature significantly decreases, which shows that the electric field can effectively reduce the high Néel temperature. Therefore, our research suggests that the magnetic and electronic properties of 2D materials can be manipulated by an external electric field, which provides a feasible direction for the tuning of nanomagnetic devices.