https://www.selleckchem.com/products/tas-120.html The cerebral cortex is a highly convoluted structure with distinct morphologic features, namely the gyri and sulci, which are associated with the functional segregation or integration in the human brain. During the lifespan, the brain atrophy that is accompanied by cognitive decline is a well-accepted aging phenotype. However, the detailed patterns of cortical folding change during aging, especially the changing age-dependencies of gyri and sulci, which is essential to brain functioning, remain unclear. In this study, we investigated the morphology of the gyral and sulcal regions from pial and white matter surfaces using MR imaging data of 417 healthy participants across adulthood to old age (21-92 years). To elucidate the age-related changes in the cortical pattern, we fitted cortical thickness and intrinsic curvature of gyri and sulci using the quadratic model to evaluate their age-dependencies during normal aging. Our findings show that comparing to gyri, the sulcal thinning is the most prominent pattern during the aging process, and the gyrification of pial and white matter surfaces were also affected differently, which implies the vulnerability of functional segregation during aging. Taken together, we propose a morphological model of aging that may provide a framework for understanding the mechanisms underlying gray matter degeneration.Purpose Loss of grip strength and cognitive impairment are prevalent in the elderly, and they may share the pathogenesis in common. Several original studies have investigated the association between them, but the results remained controversial. In this systematic review and meta-analysis, we aimed to quantitatively determine the relationship between baseline grip strength and the risk of cognitive impairment and provide evidence for clinical work. Methods We performed a systematic review using PubMed, EMBASE, Cochrane, and Web of Science up to March 23, 2020, and focused on the a