Air pollution and heat are significant threats to public health, especially in urban areas with intensive human activities under the trend of climate change. However, the mediation effects of urban form on health via air pollution and heat have been overlooked in previous investigations. This study explored the potential impacts and pathways of urban form on cardiovascular mortality through air pollutants and heat by using partial least squares model with data from Taiwan. The measurable characteristics of urban form include city size, urban sprawl, and mixed land use. Other factors that influence cardiovascular mortality, such as urban industrial level, economic status, aging population, and medical resource, were also considered in the model. Results revealed that maximizing mixed land use and minimizing city size and urban sprawl can help reduce cardiovascular mortality, and the minimizing city size was the most important one. Urban industrial level, economic status, aging population, and medical resource were also influential factors. This is the first study to consider the pathways and impacts of urban form on cardiovascular mortality, and our results indicate that proper urban planning and policy could reduce cardiovascular mortality.Acidic Mine Waters (AMWs) are characterised by high acidity (pH 98%), whereas H2SO4 was transported across the membrane (H+ rejections less then 30%). The mathematical model was able to predict the performance of both membranes as well as the potential scaling events associated with Fe and Al hydroxides and hydroxy-sulphates.Phosphorus (P) application rate can affect the As uptake by rice, but its mechanism lacks systematic studies. In this study, P fertilizers with different dosages (0, 75, 150, and 300 mg P2O5 kg-1 soil) were used to investigate the effects of P on As release in soil porewater, As sequestration on Fe plaque and the change of abundance and communities of aioA and arsC genes in rhizosphere, and then explore its effect on As uptake by rice. Our results indicated that As content in brown rice under P0 and P75 treatments was 14.3-28.6% lower than that under P150 treatment. The total accumulation of As in brown rice under P0 treatment (1.51 μg plant-1) was significantly lower than that under P150 treatment (2.17 μg plant-1). Compared to P150 treatment, P0 treatment decreased the total As content in porewater but increased the proportion of As(V) to total As in porewater. The activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in rice roots and the Fe and As contents in Fe plaque were significantly higher under P0 treatment than under P150 treatment. Most of As (80.3-82.9%) sequestered by Fe plaque was in the form of arsenate (As(V)), and the associated As(V) on Fe plaque was 11.0% higher under P0 treatment than under P150 treatment. In addition, the abundance of aioA gene was 73.5% higher under P0 treatment than under P150 treatment, and the dominant aioA at genus level was Rhizobium and Rhodoferax. In general, P0 treatment led to higher root oxidation activity, which improved the formation of Fe plaque; and P0 treatment also improved the abundance of aioA gene in rhizosphere, thus increased the oxidation of As; so, P0 treatment indirectly enhanced As sequestration on Fe plaque, and that in turn reduced As accumulation in brown rice.Esophageal cancer (EC) is a deadly malignancy worldwide with a high incidence and exhibits unevenly geographic prevalence, which suggests that environmental factors are deeply involved in the development of EC. Although the carcinogenesis of nitrosamines in the esophagus has been identified by tremendous toxicological data, the role of nitrosamines in the genesis of human EC has so far proved inconclusive largely due to a lack of convincing evidences. In this study, urinary nitrosamines in population controls and cases with esophageal precancerous lesions, including reflux esophagitis (RE) accompanying with basal cell hyperplasia (BCH) and dysplasia (DYS), and esophageal squamous cell carcinoma (ESCC) were detected by a SPE-LC-MS/MS method and the associated risk was evaluated. Higher excretion concentrations of N-nitrosomethylethylamine (NMEA) in the RE/BCH patients, NMEA and N-nitrosodibutylamine (NDBA) in the DYS patients, and NMEA, NDBA, N-nitrosopyrrolidine (NPyr) and N-nitrosomorpholine (NMor) in the ESCC patients were observed compared with the controls (p less then .05). And with the progression of esophageal lesion, the exposure complexity increased in terms of the categories of nitrosamines. Furthermore, the observed positive associations between the hazardous exposure of NMEA, NDBA and NPyr and the increased risk of ESCC, and between NMEA and NDBA and RE/BCH were established. These findings provided direct evidence to support the hypothesis that exposure to nitrosamines are involved in the carcinogenesis of esophageal epithelia in this high incidence area from the perspective of endogenous exposure assessment. However, discoveries in this study need to be confirmed by systematic researches in the future. And the dose-response relationships, the reference ranges or cutoff values to predict the risks of nitrosamines exposure also need to be defined.In this study, nano-silica (Nano-SiO2), oxidized (O-CNTs) and graphitized multi-walled carbon nanotubes (G-CNTs) were applied as model adsorbents to study the adsorption, desorption and coadsorption behaviors of sulfamerazine (SMR), Pb(II) and benzoic acid (BA). The results showed that charge assisted H-bond (CAHB) formation played an important role in adsorption of SMR and BA on O-riched nanomaterials. The adsorption capacities of Pb(II) on CNTs were 21.46- 26.77 times higher than that on Nano-SiO2, which was mainly attributed to surface complexation and cation-π interaction. https://www.selleckchem.com/products/apx-115-free-base.html The fraction of Pb2+ adsorbed in the inside channel of CNTs should not be ignored. In coexisting systems, the absolute sorption inhibition of the SMR (ΔQeSMR) was compared with the amount of competitor adsorbed. Competitive sorption was observed as indicated by adding Pb(II) decreased adsorption of SMR on Nano-SiO2 (ΔQeSMR > 0), but hardly affected SMR adsorption on CNTs (ΔQeSMR ≈ 0) which was attributed to cation-π interaction. In addition, CAHB formed between SMR and Nano-SiO2 (ΔpKa ≈ 4.