https://www.selleckchem.com/products/nec-1s-7-cl-o-nec1.html Further, the developed method was successfully applied for the estimation of BV and TZ in the ex-vivo skin matrix. This showed that the method can sensitively determine the drugs in aqueous and biological samples. Fluorescent copper nanoparticles templated by dsDNA have gained significant research interest as they are inexpensive and easy to synthesize, and have found applications in the detection of a wide range of analytes. The presence of the analyte in the reaction mixture interferes with the synthesis of the copper nanoparticles and the subsequent drop in fluorescence can be correlated to the concentration of the analyte present in the solution. Analyte detection using copper nanoparticle-based assays is amenable for in-situ applications as the test does not require expensive reagents and can be performed at room temperature. However, expensive and sophisticated detection systems are required for the detection of copper nanoparticles due to the low fluorescence emission signal from these nanoparticles. This restricts the use of the technology to centralized labs. Utilizing a recently developed chemical technique for fluorescence enhancement, this paper presents the first report of a handheld fluorometer capable of detecting DNA-templated copper nanoparticles. The fluorometer is portable and constructed with low-cost, off-the-shelf components like a UV-LED and a PIN photodiode. The performance of the developed system is demonstrated through the detection of melamine in milk samples via the interference synthesis of copper nanoparticles. Melamine is an adulterant used in dairy products that is harmful to human health if present in levels above 1 ppm. The developed system is capable of detecting up to 0.1 ppm of melamine in milk samples with a linear relationship observed between the detector output and concentration of melamine in the range from 0.1 ppm to 100 ppm (R2 = 0.9979). An improved phosphorous