The strands of research include scenarios to highlight the effect of energy provision to urbanization and the increase of urban actors (social, technological, political) in influencing the decision making related to low-carbon policies. Particularly, we study a use case of a Greek region that, despite its munificent agricultural production, also disclosures a stimulated manufacturing economy sector. The proposed decision making tool uses analytics and optimization algorithms to guide competent authorities and decision makers to sustainable energy transitioning towards decarbonization. V.The degradation kinetics and residual levels of the sulfonylurea herbicide tribenuron-methyl (TBM) in different environmental waters were studied using in tube-solid phase microextraction (IT-SPME) coupled on-line to nano-liquid chromatography (nanoLC) and UV diode array detection (DAD). This approach combines the high extraction efficiency of IT-SPME using polymeric coatings reinforced with metal oxide nanoparticles and the high sensitivity attainable by nanoLC, making possible the determination of TBM at low ppb levels (limit of detection, 0.25 ppb) without altering the sample matrix. The present study demonstrated that the preservation of the sample properties is essential to ensure accurate results at these concentration levels due to the high tendency of TBM to hydrolyze, particularly under the acidic conditions involved in most protocols used for sample treatment. The approach used in the present study was applied to evaluate the degradation of this herbicide under different conditions (UV radiation, pH), as well as to study the evolution of its concentration in different environmental waters, namely sea, river, ditch and transition waters. https://www.selleckchem.com/EGFR(HER).html When the samples were exposed to identical conditions, significant differences in the degradation rate of TBM were found depending on the water matrix. The results obtained indicate that this herbicide can persist from several days to weeks depending on the type of water. The accumulation of microplastics in offshore aquaculture waters has gradually become a threat to the survival of marine life, and the combined pollution of microplastics and other pollutants is attracting widespread attention. In this paper, tetracycline (TC) was selected as a typical antibiotic, and its adsorption behavior on the surface of diverse type and different sizes of microplastics was studied to explore their combined pollution in an aqueous solution. The results of isotherm fitting showed that the maximum adsorption capacity and coefficient of polyethylene (PE) were the largest, and the adsorption capacity of PE was the strongest among the three microplastics polyethylene (PE), polystyrene (PS) and polyvinyl chloride (PVC). With increasing PE particle size, the maximum adsorption capacity and adsorption coefficient of TC showed a significant decreasing trend, with a slight fluctuation in the middle. The presence of Pb2+, Cr3+, Cd2+, and Zn2+ markedly enhanced the adsorption of TC to PE, and Cu2+ could reduce the adsorption of TC to PE. The presence of chloride ions did not affect the adsorption process, which indicated that the adsorption mechanism between TC and microplastics is mainly an ion exchange mechanism. These results showed that the surface properties of microplastics and the chemical properties of the aqueous solution played an important role in the adsorption of TC. This study provides important scientific guidance and a theoretical basis for the study of the interfacial behavior, migration and transformation of marine microplastics. Prolonged exposure to human induced-stressors can profoundly modify the natural trajectory of ecosystems. Predicting how ecosystems respond under stress requires understanding how physical and biological properties of degraded systems parallel or deviate over time from those of near-natural systems. Utilizing comprehensive forest inventory datasets, we used a paired chronosequence modelling approach to test the effects of long-term channelization and flow regulation of a large river on changes in abiotic conditions and related riparian forest attributes across a range of successional phases. By comparing ecological trajectories between the highly degraded Rhône and the relatively unmodified Drôme rivers, we demonstrated a rapid, strong and likely irreversible divergence in forest succession between the two rivers. The vast majority of metrics measuring life history traits, stand structure, and community composition varied with stand age but diverged significantly between rivers, concurrent with large differencal changes in environmental conditions to determine ecological trajectories in riparian ecosystems, as has been shown for old fields and other successional contexts. Coastal tidal estuaries are vital to the exchange of energy and material between inland waters and the open ocean. Debris originating from the land and ocean enter this environment and are transported by currents (river outflow and tide), wind, waves and density gradients. Understanding and predicting the source and fate of such debris has considerable environmental, economic and visual importance. We show that this issue can be addressed using the Lagrangian coherent structures (LCS) technique which is highly robust to hydrodynamic model uncertainties. Here we present a comprehensive study showing the utility of this approach to describe the fate of floating material in a coastal tidal embayment. An example is given from Moreton Bay, a semi-enclosed subtropical embayment with high morphologic, ecological and economic significance to Southeast Queensland, Australia. Transport barriers visualised by the LCS create pathways and barriers for material transport in the embayment. It was found that the wind field modified both the rate attraction and location of the transport barriers. One of the key outcomes is the demonstration of the significant role of islands in partitioning the transport of material and mixing within the embayment. The distribution of the debris sources along the shoreline are explained by the relative location of the LCS to the shoreline. Therefore, extraction of LCS can help to predict sources and fate of anthropogenic marine debris and thus, serve as a useful way for effective management of vulnerable regions and marine protected areas.