https://www.selleckchem.com/products/GDC-0941.html Still no effective antiviral drugs are available for many viral infections. Though, there are a couple of drugs for herpesviruses, many for influenza and some new antiviral drugs for treating hepatitis C infection and HIV. Action mechanism of antiviral drugs consists of its transformation to triphosphate following the viral DNA synthesis inhibition. An analysis of the action mechanism of known antiviral drugs concluded that they can increase the cell's resistance to a virus (interferons), suppress the virus adsorption in the cell or its diffusion into the cell and its deproteinisation process in the cell (amantadine) along with antimetabolites that causes the inhibition of nucleic acids synthesis. This review will address currently used antiviral drugs, mechanism of action and antiviral agents reported against COVID-19. Accumulation of endogenous all-trans retinoic acid (ATRA) plays a role in the degeneration of photoreceptor cells and retinal pigment epithelium (RPE) cells, contributing to age-related macular degeneration (AMD). This study attempted to investigate the influence of antioxidant N-acetylcysteine (NAC) and selective endoplasmic reticulum stress (ERS) inhibitor salubrinal on apoptosis of ARPE-19 cells induced by ATRA. The RPE cell line (ARPE-19) was treated with ATRA, ATRA+NAC, ATRA+salubrinal or ATRA+NAC+salubrinal and the control was untreated. After 24 h of cell culture, the levels of apoptosis, multicaspase and reactive oxygen species (ROS) were detected by flow cytometry. Western blot analysis was employed to detect the expression of vascular endothelial growth factor-A (VEGF-A), C/EBP homologous protein (CHOP) and cleaved caspase-3 in the groups. The results of flow cytometry showed that NAC and salubrinal decreased the levels of apoptosis, ROS and multicaspase. ATRA increased VEGF-A levels associated with neovascularisation. NAC and salubrinal inhibited an increase in VEGF-A, CHOP and caspase-3 c