https://www.selleckchem.com/products/Cyclopamine.html 1(4)%, ranging from 45.3(6)% for hexane to 60(1)% for acetic acid.Carbon-based, non-noble metal catalysts for the oxygen reduction reaction (ORR) are crucial for the large-scale application of metal-air batteries and fuel cells. Density functional theory calculations were performed to explore the potential of atomically dispersed MN4/C (M = Fe or Mn) as an ORR catalyst in an acidic electrolyte and the ORR mechanism on MN4/C was systematically studied. The results indicated MN4 as the active site of MN4/C and a four-electron OOH transformation pathway as the preferred ORR mechanism on the MN4/C surface. The Gibbs free energy diagram showed that the rate-determining step of the FeN4/C and MnN4/C catalysts is the formation of the second H2O molecule and OOH*, respectively. FeN4/C exhibited higher thermodynamic limiting potential (0.79 V) and, thus, higher ORR activity than MnN4/C (0.52 V) in an acidic environment; its excellent catalytic performance is due to the nice electron structure and adsorption properties of the FeN4 site. Therefore, this work demonstrates that atomically dispersed MN4/C is a promising catalyst for the ORR.Dental caries is the most common oral disease that causes demineralization of the enamel and later of the dentin. Depth-wise assessment of the demineralization process could be used to help in treatment planning. In this study, we aimed to provide baseline information for the development of a Raman probe by characterizing the mineral composition of the dental tissues from large composition maps (6 × 3 mm2 with 15 μm step size) using Raman microspectroscopy. Ten human wisdom teeth with different stages of dental caries lesions were examined. All of the teeth were cut in half at representative locations of the caries lesions and then imaged with a Raman imaging microscope. The pre-processed spectral maps were combined into a single data matrix, and the spectra of the enamel, dentin, and carie