https://www.selleckchem.com/products/SU11274.html Turbidity is a key environmental parameter that is used in the determination of water quality. The turbidity of a water body gives an indication of how much suspended sediment is present, which directly impacts the clarity of the water (i.e., whether it is cloudy or clear). Various commercial nephelometric and optical approaches and products exist for electronically measuring turbidity. However, most of these approaches are unsuitable or not viable for collecting data remotely. This paper investigates ways for incorporating a turbidity sensor into an existing remote aquatic environmental monitoring platform that delivers data in near real-time (i.e., 15-min intervals). First, we examine whether an off-the-shelf turbidity sensor can be modified to provide remote and accurate turbidity measurements. Next, we present an inexpensive design for a practical light attenuation turbidity sensor. We outline the sensor's design rationale and how various technical and physical constraints were overcome. The turbidity sensor is calibrated against a commercial turbidimeter using a Formazin standard. Results indicate that the sensor readings are indicative of actual changes in turbidity, and a calibration curve for the sensor could be attained. The turbidity sensor was trialled in different types of water bodies over nine months to determine the system's robustness and responsiveness to the environment.In agriculture, the wine sector is one of the industries most affected by the sustainability issue. It is responsible for about 0.3% of annual global greenhouse gas emissions from anthropogenic activities. Sustainability in vitiviniculture was firstly linked to vineyard management, where the use of fertilizers, pesticides and heavy metals is a major concern. More recently, the contribution of winemaking, from grape harvest to bottling, has also been considered. Several cellar processes could be improved for reducing the environmental