Clinical trials have shown that many patients with breast cancer with limited sentinel lymph node (SLN) metastatic disease can safely avoid axillary lymph node dissection. Ultra-staging of initially negative SLNs may not confer additional clinical benefit. Despite this, protocols of 'enhanced pathological examination' (EPE) are still widely used. We evaluated the impact of our EPE protocol. If initial SLN H&Es are negative, we cut three additional H&E levels at 500 µm intervals with two spare sections at each level, to allow for immunohistochemistry if necessary. Occult micrometastases or isolated tumour cells were identified, using this protocol, in 3.4%, resulting in change of N stage in 3%. 1% of patients had further axillary surgery based on these findings. https://www.selleckchem.com/products/ziftomenib.html Our SLN-EPE protocol provided additional information in a small number of cases and changed axillary management in a minority. It represented a significant workload for scientists and pathologists, and had time and cost implications. We concluded that emphasising careful gross examination along with judicious use of additional levels and immunohistochemistry may be more beneficial than our current protocol.NSun2 is an RNA methyltransferase introducing 5-methylcytosine into tRNAs, mRNAs, and noncoding RNAs, thereby influencing the levels or function of these RNAs. Autotaxin (ATX) is a secreted glycoprotein and is recognized as a key factor in converting lysophosphatidylcholine into lysophosphatidic acid (LPA). The ATX-LPA axis exerts multiple biological effects in cell survival, migration, proliferation, and differentiation. Here, we show that NSun2 is involved in the regulation of cell migration through methylating ATX mRNA. In the human glioma cell line U87, knockdown of NSun2 decreased ATX protein levels, whereas overexpression of NSun2 elevated ATX protein levels. However, neither overexpression nor knockdown of NSun2 altered ATX mRNA levels. Further studies revealed that NSun2 methylated the 3'-UTR of ATX mRNA at cytosine 2756 in vitro and in vivo Methylation by NSun2 enhanced ATX mRNA translation. In addition, NSun2-mediated 5-methylcytosine methylation promoted the export of ATX mRNA from nucleus to cytoplasm in an ALYREF-dependent manner. Knockdown of NSun2 suppressed the migration of U87 cells, which was rescued by the addition of LPA. In summary, we identify NSun2-mediated methylation of ATX mRNA as a novel mechanism in the regulation of ATX.The two branches of the Kennedy pathways (CDP-choline and CDP-ethanolamine) are the predominant pathways responsible for the synthesis of the most abundant phospholipids, phosphatidylcholine and phosphatidylethanolamine, respectively, in mammalian membranes. Recently, hereditary diseases associated with single gene mutations in the Kennedy pathways have been identified. Interestingly, genetic diseases within the same pathway vary greatly, ranging from muscular dystrophy to spastic paraplegia to a childhood blinding disorder to bone deformations. Indeed, different point mutations in the same gene (PCYT1; CCTα) result in at least three distinct diseases. In this review article, we will summarize and review the genetic diseases associated with mutations in genes of the Kennedy pathway for phospholipid synthesis. These single gene disorders provide insight, indeed direct genotype-phenotype relationships, into the biological functions of specific enzymes of the Kennedy pathway. We discuss potential mechanisms of how mutations within the same pathway can cause disparate disease.The QT interval is a recording of cardiac electrical activity. Previous genome-wide association studies identified genetic variants that modify the QT interval upstream of LITAF (lipopolysaccharide-induced tumor necrosis factor-α factor), a protein encoding a regulator of endosomal trafficking. However, it was not clear how LITAF might impact cardiac excitation. We investigated the effect of LITAF on the voltage-gated sodium channel Nav1.5, which is critical for cardiac depolarization. We show that overexpressed LITAF resulted in a significant increase in the density of Nav1.5-generated voltage-gated sodium current INa and Nav1.5 surface protein levels in rabbit cardiomyocytes and in HEK cells stably expressing Nav1.5. Proximity ligation assays showed co-localization of endogenous LITAF and Nav1.5 in cardiomyocytes, whereas co-immunoprecipitations confirmed they are in the same complex when overexpressed in HEK cells. In vitro data suggest that LITAF interacts with the ubiquitin ligase NEDD4-2, a regulator of Nav1.5. LITAF overexpression down-regulated NEDD4-2 in cardiomyocytes and HEK cells. In HEK cells, LITAF increased ubiquitination and proteasomal degradation of co-expressed NEDD4-2 and significantly blunted the negative effect of NEDD4-2 on INa We conclude that LITAF controls cardiac excitability by promoting degradation of NEDD4-2, which is essential for removal of surface Nav1.5. LITAF-knockout zebrafish showed increased variation in and a nonsignificant 15% prolongation of action potential duration. Computer simulations using a rabbit-cardiomyocyte model demonstrated that changes in Ca2+ and Na+ homeostasis are responsible for the surprisingly modest action potential duration shortening. These computational data thus corroborate findings from several genome-wide association studies that associated LITAF with QT interval variation.The inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs), which form tetrameric channels, play pivotal roles in regulating the spatiotemporal patterns of intracellular calcium signals. Mutations in IP3Rs have been increasingly associated with many debilitating human diseases such as ataxia, Gillespie syndrome, and generalized anhidrosis. However, how these mutations affect IP3R function, and how the perturbation of as-sociated calcium signals contribute to the pathogenesis and severity of these diseases remains largely uncharacterized. Moreover, many of these diseases occur as the result of autosomal dominant inheritance, suggesting that WT and mutant subunits associate in heterotetrameric channels. How the in-corporation of different numbers of mutant subunits within the tetrameric channels affects its activities and results in different disease phenotypes is also unclear. In this report, we investigated representative disease-associated missense mutations to determine their effects on IP3R channel activity.