https://www.selleckchem.com/products/ly333531.html This study has demonstrated the potential of using a whole biomass (matcha) as the single encapsulant for protection and delivery of omega-3 oils. p-Cresol (PC) is a potential off-flavor and carcinogenic compound that affects food flavor and safety. However, controlling the production of PC when making fermented food is hindered by a lack of knowledge of the microbial diversity and the growth requirements of the microbiota that produce PC. To address this, the present study used three media with selected carbon sources (glucose, ethanol and lactic acid) to explore the microbial origin of PC and to determine the preferred carbon source for the PC-producing microbiota in the pit mud of the strong-aroma type Baijiu. The results showed that the different carbon sources affected the microbial structure, especially of the PC-producing microbiota. Glucose led to the highest production of PC and lactic acid to the lowest. The production of PC was significantly correlated (p 0.6) with Dorea, Sporanaerobacter, Tepidimicrobium, Tissierella Soehngenia, Clostridium and Sedimentibacter in the glucose medium; with Proteiniborus, Ruminococcus and Sporanaerobacter in the ethanol medium; and with Lutispora and Tepidimicrobium in the lactic acid medium. Multiphasic metabolite target analysis further indicated that the PC-producing microbiota could also metabolize flavor compounds. Lactic acid could inhibit the production of PC and ensure that the microbiota produced the appropriate flavor compounds during culture. Collectively, Dorea, Sporanaerobacter, Tepidimicrobium, Tissierella_Soehngenia, Clostridium, Sedimentibacter, Proteiniborus, Ruminococcus and Lutispora were identified as potential PC producers in three media with glucose preferred as the carbon source. These findings provide a perspective on the microbiota and carbon source preference for ultimately improving the quality of distilled alcoholic beverage. Temporal Dominance o