https://www.selleckchem.com/products/tg003.html In the PAS stained WSIs, normal and sclerosed glomeruli were respectively classified with the F1-score of 97.5% and 68.8%. In the H&E stained WSIs, the F1-scores of 90.8% and 78.1% were achieved. Regardless the tissue staining, the glomeruli in the test WSIs were classified with the F1-score of 94.5% (n=923, normal) and 76.8% for (n=261, sclerosed). These results demonstrate for the first time that a framework based on the U-Net model trained with glomerular patches from PAS stained WSIs can reliably segment and classify normal and sclerosed glomeruli in PAS and also H&E stained WSIs. Our approach yielded higher accuracy of glomerular classifications than some of the recently published methods. Additionally, our test set of images with ground truth is publicly available.Developing efficient vessel-tracking algorithms is crucial for imaging-based diagnosis and treatment of vascular diseases. Vessel tracking aims to solve recognition problems such as key (seed) point detection, centerline extraction, and vascular segmentation. Extensive image-processing techniques have been developed to overcome the problems of vessel tracking that are mainly attributed to the complex morphologies of vessels and image characteristics of angiography. This paper presents a literature review on vessel-tracking methods, focusing on machine-learning-based methods. First, the conventional machine-learning-based algorithms are reviewed, and then, a general survey of deep-learning-based frameworks is provided. On the basis of the reviewed methods, the evaluation issues are introduced. The paper is concluded with discussions about the remaining exigencies and future research. High field strength 3T and 7T Time-Of-Flight Magnetic Resonance Angiography (TOF- MRA) achieves better visualization of intracranial vessels, so it attracts much attention. However, quantitative comparison between 3T and 7T MRA is lacking in the aspects of image quality and