https://www.selleckchem.com/products/gdc-0068.html The α-glucosidase inhibitor acarbose, produced by Actinoplanes sp. SE50/110, is a well-known drug for the treatment of type 2 diabetes mellitus. However, the largely unexplored biosynthetic mechanism of this compound has impeded further titer improvement. Herein, we uncover that 1-epi-valienol and valienol, accumulated in the fermentation broth at a strikingly high molar ratio to acarbose, are shunt products that are not directly involved in acarbose biosynthesis. Additionally, we find that inefficient biosynthesis of the amino-deoxyhexose moiety plays a role in the formation of these shunt products. Therefore, strategies to minimize the flux to the shunt products and to maximize the supply of the amino-deoxyhexose moiety are implemented, which increase the acarbose titer by 1.2-fold to 7.4 g L-1. This work provides insights into the biosynthesis of the C7-cyclitol moiety and highlights the importance of assessing shunt product accumulation when seeking to improve the titer of microbial pharmaceutical products.T cells play a critical role in controlling viral infection; however, the mechanisms regulating their responses remain incompletely understood. Here, we investigated the role of topoisomerase IIA (Top2α, an enzyme that is essential in resolving entangled DNA strands during replication) in telomeric DNA damage and T cell dysfunction during viral infection. We demonstrated that T cells derived from patients with chronic viral (HBV, HCV, and HIV) infection had lower Top2α protein levels and enzymatic activity, along with an accumulation of the Top2α cleavage complex (Top2cc) in genomic DNA. In addition, T cells from virally infected subjects with lower Top2α levels were vulnerable to Top2α inhibitor-induced cell apoptosis, indicating an important role for Top2α in preventing DNA topological disruption and cell death. Using Top2α inhibitor (ICRF193 or Etoposide)-treated primary T cells as a model, we demonstrated