https://www.selleckchem.com/products/remodelin.html This suggested that the high dose of UV-B led to the inactivation and fragmentation of mitochondria, which were removed by mitophagy activated by UV-B. The UV-B-sensitive phenotype of the atg5 phr1 double mutant was more severe than that of atg5 or phr1. In wild-type, phr1, and AtPHR1ox plants, autophagy-related genes were strongly expressed following UV-B exposure independently of UV-B-induced CPD accumulation. Therefore, mitophagy might be one of the important repair mechanisms for UV-B-induced damage. The severe UV-B-sensitive phenotype of atg5 phr1 is likely an additive effect of deficiencies in independent machineries for UV-B protection, autophagy, and CPD photorepair.Carbon dots (CDs) and photoluminescent carbon dots (Pn-CDs) are promising nanomaterials due to their bioimaging applications and have attracted considerable attention because of their excellent stability, good biocompatibility, and low biotoxicity. Here, the Pn-CDs and highly fluorescent nitrogen-doped CDs (Pn N-CDs) derived from Panax notoginseng were successfully synthesized by a simple hydrothermal method. Pn N-CDs exhibit optical properties and stability superior to those of Pn-CDs and can be better used as fluorescent dyes and probes in biological imaging. The obtained Pn N-CDs can be effectively applied to the imaging of bacteria, fungi, plant cells, and protozoa. In addition, Pn N-CDs can perform specific staining on the membranes of all tested cells. The in vivo imaging of mice revealed that Pn N-CDs exhibit nontoxicity and good biocompatibility and biodistribution. Furthermore, Pn N-CDs can be utilized as fluorescent probes for the rapid and highly selective detection of Cr6+. Hence, a simple, cost-effective, scalable, and green synthetic approach based on traditional Chinese medicine-derived CDs can be used to develop biolabeling, membrane targeting, and optical sensing probes.Oxidative stress significantly contributes to heart disease