COVID-19 has disproportionately placed women in academic science on the frontlines of domestic and clinical care compared to men. As a result, women in science are publishing less and potentially acquiring less funding during COVID-19 than compared to before. This widens the pre-existing gap between men and women in prevailing, publication-based measures of productivity used to determine academic career progression. Early career women and those with intersectional identities associated with greater inequities, are facing unique challenges during this time. We argue that women will fall further behind unless academic reward systems adjust how and what they evaluate. We propose several strategies that academic institutions, funders, journals, and men in academic science can take.Skeletal muscle (SkM) is essential for body movement, energy metabolism, and material metabolism, and directly influences the quality of human life. Aging, chronic diseases, and strenuous exercise often lead to various health problems associated with SkM, including muscle atrophy, loss of muscle mass and strength, and metabolic disorders. Various natural products (NaPs), mainly resveratrol (RES), quercetin (QUE), ursolic acid (UA), ecdysone (ECD; mainly 20-OH ECD, 20-HE), and vitamin D, have been reported to protect or regulate SkM health. Some of the products are functionally equivalent to sex hormones, and some are even referred to as "plant exercise pills." However, controversy persists regarding the role of NaPs in SkM health. Therefore, this review objectively summarizes the in vivo and vitro biological activities, molecular mechanisms, and clinical research results of studies on NaPs applied in the regulation of SkM health over the past decade. The present review could advance further research on NaPs and SkM health, and facilitate the revelation of new evidence that could facilitate the application of NaPs in ensuring SkM health.Metabolic syndrome (MetS) include obesity as a critical feature and is strongly associated with risk of cardiovascular disease (CVD). Insights into mechanisms involved in the pathophysiology of these clinical manifestations are essential for the development of therapeutic strategies. Thus, Western diets (WD) have been widely employed in diet-induced obesity (DIO) model. However, there are variations in fat and sugar proportions of such diets, making comparisons challenging. We aimed to assess the impact of two types of the WD on metabolic status and cardiac remodeling, to achieve a DIO model that better mimics the human pathogenesis of MetS-induced CVD. Male Wistar rats were distributed into three groups control diet, Western diet fat (WDF), and Western diet sugar (WDS) for 41 weeks. Metabolic and inflammatory parameters and cardiac changes were characterized. WDF and WDS feeding promoted higher serum triglycerides, glucose intolerance, and insulin resistance, while just WDF presented inflammation in adipose tissue. WDF-fed rats showed increased catalase activity and malondialdehyde (MDA) and carbonyl protein levels, suggesting cardiac oxidative stress, while WDS-fed rats only raised MDA. Both WD equally elevated protein expressions involved in lipid metabolism, but only WDF downregulated the glycolysis pathway. Furthermore, the mechanical myocardial function was impaired in obese rats, being more relevant in WDF. In conclusion, both WD effectively triggered MetS features, although inflammation was detected just on the WDF-fed animals. Moreover, the WDF promoted a more pronounced functional, metabolic, and oxidative cardiac disorder, suggesting to be an adequate model for studying CVD in the scenario of MetS.Vegetables are essential protective diet ingredients that supply ample amounts of minerals, vitamins, carbohydrates, proteins, dietary fiber, and various nutraceutical compounds for protection against various disease conditions. Color is the most important quality parameter for the farmers to access the harvest maturity while for the consumer's reliable indices to define acceptability or rejection. The colored vegetables contain functional compounds like chlorophylls, carotenoids, betalains, anthocyanins, etc. well recognized for their antioxidant, antimicrobial, hypolipidemic, neuroprotective, antiaging, diuretic, and antidiabetic properties. Recently, there has been a shift in food consumption patterns from processed to semi-processed or fresh fruits and vegetables to ensure a healthy disease-free life. https://www.selleckchem.com/products/iberdomide.html This shifted the focus of agriculture scientists and food processors from food security to nutrition security. This has resulted in recent improvements to existing crops like blue tomato, orange cauliflower, colored and/or black carrots, with improved color, and thus enriched bioactive compounds. Exhaustive laboratory trials though are required to document and establish their minimum effective concentrations, bioavailability, and specific health benefits. Efforts should also be directed to breed color-rich cultivars or to improve the existing varieties through conventional and molecular breeding approaches. The present review has been devoted to a better understanding of vegetable colors with specific health benefits and to provide in-hand information about the effect of specific pigment on body organs, the effect of processing on their bioavailability, and recent improvements in colors to ensure a healthy lifestyle.Protein malnutrition causes anemia and leukopenia as it reduces hematopoietic precursors and impairs the production of mediators that regulate hematopoiesis. Hematopoiesis occurs in distinct bone marrow niches that modulate the processes of differentiation, proliferation and self-renewal of hematopoietic stem cells (HSCs). Mesenchymal stem cells (MSCs) contribute to the biochemical composition of bone marrow niches by the secretion of several growth factors and cytokines, and they play an important role in the regulation of HSCs and hematopoietic progenitors. In this study, we investigated the effect of protein malnutrition on the hematopoietic regulatory function of MSCs. C57BL/6NTaq mice were divided into control and protein malnutrition groups, which received, respectively, a normal protein diet (12% casein) and a low protein diet (2% casein). The results showed that protein malnutrition altered the synthesis of SCF, TFG-β, Angpt-1, CXCL-12, and G-CSF by MSCs. Additionally, MSCs from the protein malnutrition group were not able to maintain the lymphoid, granulocytic and megakaryocytic-erythroid differentiation capacity compared to the MSCs of the control group.