https://www.selleckchem.com/products/eht-1864.html Age is a major risk factor for severe coronavirus disease-2019 (COVID-19). Here, we interrogate the transcriptional features and cellular landscape of the aging human lung. By intersecting these age-associated changes with experimental data on SARS-CoV-2, we identify several factors that may contribute to the heightened severity of COVID-19 in older populations. The aging lung is transcriptionally characterized by increased cell adhesion and stress responses, with reduced mitochondria and cellular replication. Deconvolution analysis reveals that the proportions of alveolar type 2 cells, proliferating basal cells, goblet cells, and proliferating natural killer/T cells decrease with age, whereas alveolar fibroblasts, pericytes, airway smooth muscle cells, endothelial cells and IGSF21+ dendritic cells increase with age. Several age-associated genes directly interact with the SARS-CoV-2 proteome. Age-associated genes are also dysregulated by SARS-CoV-2 infection in vitro and in patients with severe COVID-19. These analyses illuminate avenues for further studies on the relationship between age and COVID-19.1,2-Bis-silyl alkenes have exciting synthetic potential for programmable sequential synthesis via manipulation of the two vicinal silyl groups. Transition metal-catalyzed bis-silylation of alkynes with disilanes is the most straightforward strategy to access such useful building blocks. However, this process has some limitations (1) symmetric disilanes are frequently employed in most of the reactions to assemble two identical silyl groups, which makes chemoselective differentiation for stepwise downstream transformations difficult; (2) the main catalysts are low-valent platinum group transition metal complexes, which are expensive; and (3) internal alkynes remain challenging substrates with low inherent reactivity. Thus, the development of abundant metal-catalyzed bis-silylation of internal alkynes with unsymmetrical d