https://www.selleckchem.com/products/wnt-c59-c59.html The early detection of Heart Disease (HD) and the prediction of Heart Failure (HF) via telemonitoring and can contribute to the reduction of patients' mortality and morbidity as well as to the reduction of respective treatment costs. In this study we propose a novel classification model based on fuzzy logic applied in the context of HD detection and HF prediction. The proposed model considers that data can be represented by fuzzy phrases constructed from fuzzy words, which are fuzzy sets derived from data. Advantages of this approach include the robustness of data classification, as well as an intuitive way for feature selection. The accuracy of the proposed model is investigated on real home telemonitoring data and a publicly available dataset from UCI.The aim of this study is to build an evaluation framework for the user-centric testing of the Data Curation Tool. The tool was developed in the scope of the FAIR4Health project to make health data FAIR by transforming them from legacy formats into a Common Data Model based on HL7 FHIR. The end user evaluation framework was built by following a methodology inspired from the Delphi method. We applied a series of questionnaires to a group of experts not only in different roles and skills, but also from various parts of Europe. Overall, 26 questions were formulated for 16 participants. The results showed that the users are satisfied with the capabilities and performance of the tool. The feedbacks were considered as recommendations for technical improvement and fed back into the software development cycle of the Data Curation Tool.Reproducible information is important in science, medicine and other professional fields. Repeating the same experiment with measurement should yield the same information as the result. This original information should also be transported digitally in reproducible form, as a globally well-defined sequence of numbers. The article explains that