https://www.selleckchem.com/products/mi-773-sar405838.html Poultry processing establishments use antimicrobial aids on broiler parts to minimize Campylobacter contamination. A silver-stabilized hydrogen peroxide (SHP) product was assessed for use as an antimicrobial processing aid. In a series of experiments, wing segments with skin were inoculated with 103 to 107 cells of Campylobacter coli, followed by treatment with SHP at 15,000 or 30,000 mg/L, peroxyacetic acid (PAA) at 300 or 3,000 mg/L (parts per million), or water. Each treatment was applied by either dip or spray. Rinsates from each wing segment were analyzed for direct counts and prevalence of Campylobacter. Treatment with SHP or PAA significantly reduced Campylobacter levels compared with water controls by up to 2.22 log CFU/mL. At high inoculum levels (106 to 107), SHP and PAA applied by dip had up to 1.27 log CFU/mL further reductions of Campylobacter levels compared with spray-treated wing segments. Additionally, wing drumettes were observed to retain higher levels and prevalence of Campylobacter recovery compared with wing flats at a low inoculation level (103). The results indicated that there was no carryover effect of SHP (same day versus 24 h) and dip treatment with SHP or PAA decreased Campylobacter recovery on broiler chicken wing segments compared with a water control. Although a 2-log reduction was modest, SHP had similar efficacy as the commonly used processing aid PAA. SHP shows potential for further investigation as an antimicrobial processing aid for use on poultry parts. Local phosphatase regulation is needed at kinetochores to silence the mitotic checkpoint (a.k.a. spindle assembly checkpoint [SAC]). A key event in this regard is the dephosphorylation of MELT repeats on KNL1, which removes SAC proteins from the kinetochore, including the BUB complex. We show here that PP1 and PP2A-B56 phosphatases are primarily required to remove Polo-like kinase 1 (PLK1) from the BUB complex, which can