https://www.selleckchem.com/products/o6-benzylguanine.html We developed a gradient-based unsupervised clustering method to extract the patterns learned by the ResNet models. We demonstrated that simulated regulatory grammars are best learned in the penultimate layer of the ResNets, and the proposed method can accurately retrieve the regulatory grammar even when there is heterogeneity in the enhancer categories and a large fraction of TFBS outside of the regulatory grammar. However, we also identify common scenarios where ResNets fail to learn simulated regulatory grammars. Finally, we applied the proposed method to mouse developmental enhancers and were able to identify the components of a known heterotypic TF cluster. Our results provide a framework for interpreting the regulatory rules learned by ResNets, and they demonstrate that the ability and efficiency of ResNets in learning the regulatory grammar depends on the nature of the prediction task.In the modern genomic era, scientists without extensive bioinformatic training need to apply high-power computational analyses to critical tasks like phage genome annotation. At the Center for Phage Technology (CPT), we developed a suite of phage-oriented tools housed in open, user-friendly web-based interfaces. A Galaxy platform conducts computationally intensive analyses and Apollo, a collaborative genome annotation editor, visualizes the results of these analyses. The collection includes open source applications such as the BLAST+ suite, InterProScan, and several gene callers, as well as unique tools developed at the CPT that allow maximum user flexibility. We describe in detail programs for finding Shine-Dalgarno sequences, resources used for confident identification of lysis genes such as spanins, and methods used for identifying interrupted genes that contain frameshifts or introns. At the CPT, genome annotation is separated into two robust segments that are facilitated through the automated execution of many tools