https://www.selleckchem.com/ With the rapid development of oil hydrogenation industry, the development of oil hydrogenation catalyst has also become a research hotspot. In this paper, ultrasound-assisted precipitation technique is used to prepare Ni/Al2O3 catalyst. The effect of ultrasonic output power on catalyst performance is investigated. The prepared catalyst is applied to the hydrogenation reaction of castor oil. It is found that the prepared catalyst shows the best hydrogenation performance when ultrasonic output power, frequency and ultrasonic treatment time are 80 W, 40 kHz and 600 min respectively. It also indicates that ultrasound-assisted precipitation technique can reduce the particle size and increase the specific surface area of Ni/Al2O3 catalyst so that its activity is improved. In addition, six important elements that should be considered in the development of industrial oil refining catalysts are discussed, and the effects of these factors on the catalyst performance are discussed. Finally, new way for improving catalyst performance is given, and the application of some new materials and methods in oil refining is introduced. In this study, a photo-catalyst of titanium oxide was coated on zeolite by the sol-gel method. The generation of the zeolite-titanate photo-catalyst was optimized at conditions of calcination temperature (300, 350, 400 and 500 °C), calcination time (1, 2, 3, and 4 h), and titanate content (0, 2, 4, 6, and 8 mL). The catalyst was used for 'Sonication/UV/H2O2″ activity and finally, eliminating ibuprofen. Physicochemical properties of the as-built photo-catalysts for all optimized conditions were determined using FESEM-EDX-mapping, BET, FTIR, and XRD. The highest percentage of ibuprofen removal (98.9%) was obtained at conditions of zeolite to titanium ratio of 1 g 2 mL, time in the furnace of 1 h, and temperature of the furnace of 350 °C. The optimum photo-catalytic (namely, Cat-350-1-2) had a surface area value of 39 m2/g and a