https://www.selleckchem.com/products/sw033291.html In this review article, the potential of haloculture to offset the adverse impacts of the pandemic is analyzed from five perspectives increasing the area under cultivation, using unconventional water, stabilizing dust centers, increasing the body's immune resistance, and reducing losses in agribusiness due to the coronavirus. Overall, haloculture is an essential system, which COVID-19 has accelerated in the agricultural sector.Noise pollution has negative health consequences, which becomes increasingly relevant with rapid urbanization. In low- and middle-income countries research on health effects of noise is hampered by scarce exposure data and noise maps. In this study, we developed land use regression (LUR) models to assess spatial variability of community noise in the Western Region of São Paulo, Brazil.We measured outdoor noise levels continuously at 42 homes once or twice for one week in the summer and the winter season. These measurements were integrated with various geographic information system variables to develop LUR models for predicting average A-weighted (dB(A)) day-evening-night equivalent sound levels (Lden) and night sound levels (Lnight). A supervised mixed linear regression analysis was conducted to test potential noise predictors for various buffer sizes and distances between home and noise source. Noise exposure levels in the study area were high with a site average Lden of 69.3 dB(A) ranging from 60.3 to 82.3 dB(A), and a site average Lnight of 59.9 dB(A) ranging from 50.7 to 76.6 dB(A). LUR models had a good fit with a R2 of 0.56 for Lden and 0.63 for Lnight in a leave-one-site-out cross validation. Main predictors of noise were the inverse distance to medium roads, count of educational facilities within a 400 m buffer, mean Normalized Difference Vegetation Index (NDVI) within a 100 m buffer, residential areas within a 50 m (Lden) or 25 m (Lnight) buffer and slum areas within a 400 m buffer. O