https://www.selleckchem.com/products/ins018-055-ism001-055.html 05), indicating prawns may fall prey to predation more easily in acidic conditions. These findings confirm the hypothesised impacts of acidic water on penaeid prawns. Given that the conditions simulated in these experiments reflect those encountered in estuaries, acidic runoff may be contributing to bottlenecks for estuarine species and impacting fisheries productivity.Microplastics have emerged as a new anthropogenic substrate that can readily be colonized by microorganisms. Nevertheless, microbial community succession and assembly among different microplastics in nearshore mariculture cages remains poorly understood. Using an in situ incubation experiment, 16S rRNA gene amplicon sequencing, and the neutral model, we investigated the prokaryotic communities attached to polyethylene terephthalate (PET), polyethylene (PE), and polypropylene (PP) in a mariculture cage in Xiangshan Harbor, China. The α-diversities and compositions of microplastic-attached prokaryotic communities were significantly distinct from free-living and small particle-attached communities in the surrounding water but relatively similar to the large particle-attached communities. Although a distinct prokaryotic community was developed on each type of microplastic, the communities on PE and PP more closely resembled each other. Furthermore, the prokaryotic community dissimilarity among all media (microplastics and water fractions) tended to decrease over time. Hydrocarbon-degrading bacteria Alcanivorax preferentially colonized PE, and the genus Vibrio with opportunistically pathogenic members has the potential to colonize PET. Additionally, neutral processes dominated the prokaryotic community assembly on PE and PP, while selection was more responsible for the prokaryotic assembly on PET. The assembly of Planctomycetaceae and Thaumarchaeota Marine Group I taxa on three microplastics were mainly governed by selection and neutral proces