Expression of genes associated with cyclopiazonic acid (CPA) biosynthesis by Penicillium strains in a cheese-based medium has not been previously studied. To control CPA biosynthesis, it would be useful to understand the changes in gene expression during cheese production and relate them to toxin production. The objective was to evaluate the influence of pH, aw, and temperature on expression of dmaT, which encodes the enzyme dimethylallyl tryptophan synthase involved in the biosynthesis of CPA. We assayed three Penicillium strains, Penicillium commune CBS311 and CBS341 and Penicillium camemberti CBS273, using reverse transcription real-time PCR. Our results showed that the expression patterns of the gene were influenced by strain and environmental conditions. The highest expression for the P. commune strains was observed at pH 6.0, 0.95 aw, at 25 or 30 °C, depending on the strain. In contrast, P. camemberti CBS273 showed a lower dmaT expression with a maximum at 25 °C, pH 5.0 and 0.95 aw. Correlation analysis indicated that the three toxigenic strains showed a strong correlation between the relative expression of the dmaT gene and concentration of CPA under conditions simulating cheese ripening. This method could be used to control CPA production in cheese by detection of dmaT expression.Wheat is one of the most important crops in Argentina and worldwide. One of the major diseases affecting the crop is the Fusarium Head Blight (FHB). https://www.selleckchem.com/products/hydroxychloroquine-sulfate.html It is an endemic disease caused mainly by Fusarium graminearum, the most common agent of FHB around the world. The infection is strongly influenced by environmental parameters and occurs mostly when there are favourable conditions of moisture and temperature during wheat anthesis or flowering. This destructive disease affects wheat, barley and other small grains and has the capability of destroying crops, causing great economic losses due to reduced grain quality, and the accumulation of significant levels of mycotoxins such as trichothecenes. The aim of this study was to evaluate the influence of temperature on mycotoxin biosynthesis, on three strains of F. graminearum of 15-ADON genotype and one of 3-ADON genotype, with different capacity of synthesizing DON, 3-ADON and 15-ADON. Trichothecene production of the strains at different temperatures (5, 10, 15, 20, 25, 30 and 35 °C) was evaluated after 7, 14, 21, 28 and 35 d of incubation. The optimum temperature to produce DON and 3-ADON was between 25 and 30 °C, but the maximum production of 15-ADON occurred at a lower temperature (10 °C) for all the strains. Conversely, the minimum production of DON and 3-ADON was recorded between 5 and 10 °C and of 15-ADON between 30 and 35 °C. A possible explanation for the similar accumulation of both acetyl derivatives by strains of different chemotype and genotypes could be that the acetyl derivatives biosynthesis is regulated by temperature.There is a growing interest in finding safe and natural anti-microbial compounds as a valid alternative to conventional chemical treatments for managing post-harvest fruit diseases. This study investigated the anti-fungal capacity of orange peel polyphenolic extract (OPE) against three relevant post-harvest fungal pathogens, Monilinia fructicola, Botrytis cinerea and Alternaria alternata. OPE extract at 1.5 g/L inhibited (100%) the mycelial growth and conidial germination of the three target fungi. At lower concentration, the effect varied, depending on the dose applied and target fungi. When the anti-fungal activity of the main phenolic compounds in sweet orange peel, namely, the flavonoids (naringin, hesperidin and neohesperidin) and phenolic acids (ferulic and p-coumaric), were evaluated, ferulic acid and p-coumaric acid displayed significantly higher inhibitory capacity in synthetic medium, while the activity of flavonoids was limited. Synergism between compounds was not detected, and the inhibitory activity of OPE may be attributed to an additive effect of phenolic acids. Interestingly, in peach-based medium, ferulic acid remained active against M. fructicola and A. alternata and was more efficient than p-coumaric to control B. cinerea. These results highlight peel orange waste as an excellent source of anti-fungal compounds, suggesting the possibility of using ferulic acid or ferulic acid-rich extracts, either alone or in combination with other post-harvest treatment, as a natural alternative to reduce post-harvest losses and, also, enhance the shelf-life of fruit.The environmental conditions during the ripening of dry-cured meats and their nutritional composition promote the colonisation of their surface by Penicillium spp., including P. nordicum producer of ochratoxin A (OTA). The objective of this work was to study the competitiveness of three potential biocontrol candidates (Debaryomyces hansenii FHSCC 253H, Enterococcus faecium SE920 and Penicillium chrysogenum CECT, 20922) against the ochratoxigenic P. nordicum FHSCC4 under environmental and nutritional conditions simulating the ripening of dry-cured meat products. For this, the nutritional utilisation pattern, niche overlap index (NOI), interactions by dual-culture assays and OTA production were determined. The number of carbon sources (CSs) metabolised depended on the microorganism and the interacting water activity (aw) x temperature conditions. The number of CSs utilised by both filamentous fungi was quite similar and higher than those utilised by D. hansenii and E. faecium. The yeast isolate metabolised a nu the manufacture of dry-cured meat products.Fusarium-controlling fungicides are necessary to limit crop loss. Little is known about the effect of antifungal formulations at sub-lethal doses, and their interaction with abiotic factors, on Fusarium culmorum and F. proliferatum development and on zearalenone and fumonisin biosynthesis, respectively. In the present study different treatments based on sulfur, trifloxystrobin and demethylation inhibitor fungicides (cyproconazole, tebuconazole and prothioconazole) under different environmental conditions, in Maize Extract Medium, are assayed in vitro. Several machine learning methods (neural networks, random forest and extreme gradient boosted trees) have been applied for the first time for modeling growth of F. culmorum and F. proliferatum and zearalenone and fumonisin production, respectively. The most effective treatment was prothioconazole, 250 g/L + tebuconazole, 150 g/L. Effective doses of this formulation for reduction or total growth inhibition ranged as follows ED50 0.49-1.70, ED90 2.57-6.02 and ED100 4.